山东省淄博一中2024届数学高一上期末预测试题含解析_第1页
山东省淄博一中2024届数学高一上期末预测试题含解析_第2页
山东省淄博一中2024届数学高一上期末预测试题含解析_第3页
山东省淄博一中2024届数学高一上期末预测试题含解析_第4页
山东省淄博一中2024届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省淄博一中2024届数学高一上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.函数在区间上的图象可能是()A. B.C. D.2.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.3.已知六边形是边长为1的正六边形,则的值为A. B.C. D.4.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.12005.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.6.已知点落在角的终边上,且∈[0,2π),则的值为()A B.C. D.7.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.8.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③9.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数10.已知函数,下面关于说法正确的个数是()①的图象关于原点对称②的图象关于y轴对称③的值域为④在定义域上单调递减A.1 B.2C.3 D.411.已知集合,,,则A. B.C. D.12.如果,,那么()A. B.C. D.二、填空题(本大题共4小题,共20分)13.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)14.当时,函数的值总大于,则的取值范围是________15.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.16.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________三、解答题(本大题共6小题,共70分)17.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.18.已知(1)求;(2)若,求.19.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.20.计算下列各式的值:(Ⅰ)(Ⅱ)21.已知函数在区间上的最大值为6,(1)求常数m的值;(2)若,且,求的值.22.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.求:(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C2、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.3、D【解析】如图,,选D.4、C【解析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C5、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制6、D【解析】由点的坐标可知是第四象限的角,再由可得的值【详解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故选:D【点睛】此题考查同角三角函数的关系,考查三角函数的定义,属于基础题7、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误8、A【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.9、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B10、B【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域.【详解】因为的定义域为,,即函数为奇函数,所以函数的图象关于原点对称,即①正确,②不正确;因为,由于单调递减,所以单调递增,故④错误;因为,所以,,即函数的值域为,故③正确,即正确的个数为2个,故选:B.【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式.11、D【解析】本题选择D选项.12、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.二、填空题(本大题共4小题,共20分)13、,(答案不唯一)【解析】由充分条件和必要条件的定义求解即可【详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)14、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,15、-8【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角.16、(2,0,0)(答案不唯一)【解析】利用空间两点间的距离求解.【详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)三、解答题(本大题共6小题,共70分)17、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.18、(1)(2)【解析】(1)利用诱导公式可得答案;(2)利用诱导公式得到,再根据的范围和平方关系可得答案.小问1详解】.【小问2详解】,若,则,所以.19、(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换化简得出,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可得出函数的单调递增区间;(2)由可求得的取值范围,利用正弦型函数的基本性质可求得函数的值域.【小问1详解】解:,所以,函数的最小正周期为,由得,故函数的单调递增区间为.【小问2详解】解:当时,,,所以,,即函数在区间上的值域为.20、(Ⅰ);(Ⅱ).【解析】(1)根据对数运算法则化简求值(2)根据指数运算法则,化简求值试题解析:(Ⅰ)原式.(Ⅱ)原式.21、(1);(2)【解析】(1)利用二倍角公式以及辅助角公式可得,再利用三角函数的性质即可求解.(2)代入可得,从而求出,再利用诱导公式即可求解.【详解】(1),因为,则,所以,解得.(2),即,解得,,,所以,,又,所以.22、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论