版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西临汾霍州三中2023年数学九上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在中,点在边上,连接,点在线段上,,且交于点,,且交于点,则下列结论错误的是()A. B. C. D.2.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠03.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.4.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.245.根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A. B. C. D.6.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和7.如图,,,,四点都在上,,则的度数为()A. B. C. D.8.如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π9.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=10.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=011.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x-4)2=17 D.(x-4)2=1512.如图所示的图案是由下列哪个图形旋转得到的()A. B. C. D.二、填空题(每题4分,共24分)13.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球____个(以上球除颜色外其他都相同).14.只请写出一个开口向下,并且与轴有一个公共点的抛物线的解析式__________.15.五角星是我们生活中常见的一种图形,如图五角星中,点C,D分别为线段AB的右侧和左侧的黄金分割点,已知黄金比为,且AB=2,则图中五边形CDEFG的周长为________.16.在Rt△ABC中,∠C=90°,如果tan∠A=,那么cos∠B=_____.17.将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线________;18.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.三、解答题(共78分)19.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出点C2的坐标;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.20.(8分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.21.(8分)为了响应国家“大众创业、万众创新”的双创政策,大学生小王与同学合伙向市政府申请了10万元的无息创业贷款,他们用这笔贷款,注册了一家网店,招收了6名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为3500元,该网店每月还需支付其它费用0.9万元.开工后的第一个月,小王他们将该电子产品的销售单价定为6元,结果当月销售了1.8万件.(1)小王他们第一个月可以偿还多少万元的无息贷款?(2)从第二个月开始,他们打算上调该电子产品的销售单价,经过市场调研他们得出:如果单价每上涨1元,月销售量将在现有基础上减少1000件,且物价局规定该电子产品的销售单价不得超过成本价的250%.小王他们计划在第二个月偿还3.4万元的无息贷款,他们应该将该电子产品的销售单价定为多少元?22.(10分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.23.(10分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.24.(10分)一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax1+bx﹣1a(其中a≠0).已知当x=0时,h=1;当x=10时,h=1.(1)求h关于x的函数表达式;(1)求斜抛物体的最大高度和达到最大高度时的水平距离.25.(12分)2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)26.用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行线截得的线段对应成比例以及相似三角形的性质定理,逐一判断选项,即可得到答案.【详解】∵,,∴,∴A正确,∵,∴,∴B正确,∵∆DFG~∆DCA,∆AEG~∆ABD,∴,,∴,∴C错误,∵,,∴,∴D正确,故选C.【点睛】本题主要考查平行线截线段定理以及相似三角形的性质定理,掌握平行线截得的线段对应成比例是解题的关键.2、A【解析】解:∵关于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故选A.3、C【分析】连接BD得到∠ADB是直角,再利用两三角形相似对应边成比例即可求解.【详解】连接BD,由AB是直径得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选C.4、C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A(-1,6),点B(-3,2),应用待定系数法求得直线AB的解析式为y=2x+8,直线AB与x轴的交点C(-4,0),所以OC=4,点A到x轴的距离为6,所以△AOC的面积为=1.故选C.考点:待定系数法求一次函数解析式;坐标与图形.5、A【解析】根据科学计数法的表示方法即可得出答案.【详解】根据科学计数法的表示方法可得:2135应该表示为2.135×103,故答案选择A.【点睛】本题考查的是科学计数法的表示方式:(,n为正整数).6、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.7、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【详解】由圆周角定理得,∠A=∠BOD=,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=−∠A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.8、B【解析】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.9、B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=.故选B.点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.10、A【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.11、C【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【详解】解:∵,∴,即,故选:C.【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.12、D【解析】由一个基本图案可以通过旋转等方法变换出一些复合图案.【详解】由图可得,如图所示的图案是由绕着一端旋转3次,每次旋转90°得到的,
故选:D.【点睛】此题考查旋转变换,解题关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.二、填空题(每题4分,共24分)13、1【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解.故答案为:1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】要根据开口向下且与x轴有惟一的公共点,写出一个抛物线解析式即可.【详解】解:∵与x轴只有一个公共点,并且开口方向向下,
∴a<0,△=0,即b2-4ac=0,满足这些特点即可.如.
故答案为:(答案不唯一).【点睛】此题主要考查了二次函数的性质,要了解性质与函数中a,b,c的关系.15、【分析】根据点C,D分别为线段AB的右侧和左侧的黄金分割点,可得AC=BD=AB,BC=AB,再根据CD=BD-BC求出CD的长度,然后乘以5即可求解.【详解】∵点C,D分别为线段AB的右侧和左侧的黄金分割点,∴AC=BD=AB=,BC=AB,∴CD=BD﹣BC=()﹣()=2﹣4,∴五边形CDEFG的周长=5(2﹣4)=10﹣1.故答案为:10﹣1.【点睛】本题考查了黄金分割的定义:线段上一点把线段分为较长线段和较短线段,若较长线段是较短线段和整个线段的比例中项,则这个点叫这条线段的黄金分割点.16、【分析】直接利用特殊角的三角函数值得出∠A=30°,进而得出∠B的度数,进而得出答案.【详解】∵tan∠A=,∴∠A=30°,∵∠C=90°,∴∠B=180°﹣30°﹣90°=60°,∴cos∠B=.故答案为:.【点睛】此题主要考查了特殊角的三角函数值,正确理解三角函数的计算公式是解题关键.17、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键.18、120°【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.三、解答题(共78分)19、(1)见解析;(2)见解析,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,)【解析】(1)作出A、B、C关于x轴的对称点,然后顺次连接即可得到;(2)把A、B、C绕原点按逆时针旋转90度得到对应点,然后顺次连接即可得到,根据图可写出C2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,点C2的坐标为(1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心为(,).【点睛】本题综合考查了轴对称图形和图形的旋转的作图,图形变换的性质,不管是哪一种变化,找对应点是关键.20、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【点睛】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.21、(1)0.6万元;(2)2元【分析】(1)根据利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用,即可求出结论;(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,根据第二个月的利润为3.4万元,即可得出关于x的一元二次方程,即可求解.【详解】(1)(6﹣4)×12000﹣3500×6﹣9000=6000(元),6000元=0.6万元.答:小王他们第一个月可以偿还0.6万元的无息贷款.(2)设他们将该电子产品的销售单价定为x元,则月销售量为[12000﹣1000(x﹣6)]件,依题意,得:(x﹣4)[12000﹣1000(x﹣6)]﹣3500×6﹣9000=34000,整理,得:x2﹣22x+160=0,解得:x1=2,x2=1.∵4×250%=10,1>10,∴x=2.答:他们应该将该电子产品的销售单价定为2元.【点睛】本题主要考查一元二次方程的实际应用,根据“利润=单件利润×数量﹣员工每人每月的工资×员工数﹣其它费用”,列出方程,是解题的关键.22、(1)证明见解析;(2)证明见解析.【分析】(1)由AD是的平分线可得,又,则结论得证;(2)由(1)可得出结论.【详解】证明:(1)是的平分线,,.∽;(2)∽,.【点睛】此题主要考查了相似三角形的判定与性质,证明∽是解题的关键.23、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.24、(1)h=﹣x1+10x+1;(1)斜抛物体的最大高度为17,达到最大高度时的水平距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外勤会计顶岗实习报告合集6篇
- 信息通信网络运行管理员试(电力通信网络管理员)高级技师练习试题及答案
- 施工合同范文集锦七篇
- “太阳”说课稿设计
- 2024年标准副食批发购销协议模板版B版
- 老旧厂区改造的背景与意义
- 2024年度女方出轨婚姻终止协议书:财产分割及子女监护权安排2篇
- 2024年版城市轨道交通建设合同范本
- 2024年指标房买卖合同房产评估及过户流程范本3篇
- 2024年某科技公司与某广告公司关于区块链技术广告推广服务的合同
- 安全生产方案及保证措施
- 中国华能招聘笔试题库2024
- 七年级上册《朝花夕拾》梳理及真题训练(含答案)
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 中国矿业大学《自然辩证法》2022-2023学年期末试卷
- TCWAN 0105-2024 搅拌摩擦焊接机器人系统技术条件
- 江苏省期无锡市天一实验学校2023-2024学年英语七年级第二学期期末达标检测试题含答案
- 西方经济学考试题库(含参考答案)
- 引水式水电站工程施工组织设计
- 医院工作流程图较全
- NB/T 11431-2023土地整治煤矸石回填技术规范
评论
0/150
提交评论