版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市汾阳中学2023年高一数学第一学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为12.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要3.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角()A.90° B.60°C.45° D.30°4.化简
的值为A. B.C. D.5.设集合,,则A. B.C. D.6.关于x的一元二次不等式对于一切实数x都成立,则实数k满足()A. B.C. D.7.已知角的终边经过点,则的值为()A.11 B.10C.12 D.138.函数(A,ω,φ为常数,A>0,ω>0,)的部分图象如图所示,则()A. B.C. D.9.中国5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%10.“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件11.函数的部分图像是A. B.C. D.12.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知是定义在上的偶函数,且当时,,则当时,___________.14.过点且与直线垂直的直线方程为___________.15.函数的最大值是____________.16.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.有两直线和,当a在区间内变化时,求直线与两坐标轴围成四边形面积的最小值18.(1)从区间内任意选取一个实数,求事件“”发生的概率;(2)从区间内任意选取一个整数,求事件“”发生的概率.19.已知函数.(1)求函数的最大值及相应的取值;(2)方程在上有且只有一个解,求实数的取值范围;(3)是否存在实数满足对任意,都存在,使成立.若存在,求的取值范围;若不存在,说明理由.20.已知函数(1)证明:函数在上是增函数;(2)求在上的值域21.已知集合,(1)当时,求;22.已知圆C经过点,两点,且圆心在直线上(1)求圆C的方程;(2)已知、是过点且互相垂直的两条直线,且与C交于A,B两点,与C交于P、Q两点,求四边形APBQ面积的最大值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D2、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.3、B【解析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角.【详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示.∴(或其补角)是PB与AC所成的角,∵为正三角形,∴,∴PB与AC所成角为.故选:B.4、C【解析】根据两角和的余弦公式可得:,故答案为C.5、D【解析】详解】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.6、C【解析】只需要满足条件即可.【详解】由题意,解得.故选:C.7、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论8、B【解析】根据函数图像易得,,求得,再将点代入即可求得得值.【详解】解:由图可知,,则,所以,所以,将代入得,所以,又,所以.故选:B.9、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B10、A【解析】利用充分条件和必要条件的定义分析判断即可【详解】当时,,当时,或,所以“”是“”的充分非必要条件,故选:A11、D【解析】根据函数的奇偶性和函数值在某个区间上的符号,对选项进行排除,由此得出正确选项.【详解】∵是奇函数,其图像关于原点对称,∴排除A,C项;当时,,∴排除B项.故选D.【点睛】本小题主要考查函数图像的识别,考查函数的单调性,属于基础题.12、B【解析】由三角函数的平移变换即可得出答案.【详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.14、【解析】利用垂直关系设出直线方程,待定系数法求出,从而求出答案.【详解】设与直线垂直的直线为,将代入方程,,解得:,则与直线垂直的直线为.故答案为:15、【解析】把函数化为的形式,然后结合辅助角公式可得【详解】由已知,令,,,则,所以故答案为:16、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【点睛】本题考查了相交直线、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题18、(1);(2).【解析】(1)由,得,即,故由几何概型概率公式,可得从区间内任意选取一个实数,求事件“”发生的概率;(2)由,得,整数有个,在区间的整数有个,由古典概型概率公式可知得,从区间内任意选取一个整数事件“”发生的概率.试题解析:(1)因为,所以,即,故由几何概型可知,所求概率为.(2)因为,所以,则在区间内满足的整数为1,2,3,共3个,故由古典概型可知,所求概率为.19、(1)2,(2)或(3)存在,【解析】(1)由三角恒等变换化简函数,再根据正弦函数性质可求得答案;(2)将问题转化为函数与函数在上只有一个交点.由函数的单调性和最值可求得实数的取值范围;(3)由(1)可知,由已知得,成立,令,其对称轴,分,,讨论函数的最小值,建立不等式,求解即可.【小问1详解】解:由得.令,解得,∴函数的最大值为2,此时;【小问2详解】解:方程在上有且有一个解,即函数与函数在上只有一个交点.∵,∴.∵函数在上单调递增,在上单调递减,且,,.∴或;【小问3详解】解:由(1)可知,∴.实数满足对任意,都存在,使得成立,即成立,令,其对称轴,∵,∴①当时,即,,∴;②当,即时,,∴;③当,即时,,∴.综上可得,存在满足题意的实数,的取值范围是.20、(1)证明见解析(2)【解析】(1)设,化简计算并判断正负即可得出;(2)根据单调性即可求解.【小问1详解】设,,因为,所以,,则,即,所以函数在上是增函数;【小问2详解】由(1)可知,在单调递增,所以,所以在的值域为.21、(1)(2)【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为22、(1)(2)7【解析】(1)根据题意,求出MN的中垂线的方程为,分析可得圆心为直线和的交点,联立直线的方程可得圆心的坐标,进而求出圆的半径,由圆的标准方程可得答案;(2)根据题意,分2种情况讨论:,当直线,,其中一条直线斜率为0时,另一条斜率不存在,分析可得四边形APBQ的面积;,当直线,斜率均存在时,设直线的斜率为k,则方程的方程为,用k表示四边形APBQ的面积,由二次函数分析其最值,综合即可得答案【小问1详解】根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年贵州省科普知识竞赛备考试参考题库(含答案)
- 桥梁彩钢板安装工程合同
- 2024至2030年计算机网络工程项目投资价值分析报告
- 2024至2030年脂肠康宁胶囊项目投资价值分析报告
- 2024年度国际公益活动赞助与合作协议2篇
- 2024年婚外恋离婚后遗产分配协议
- 2024至2030年全能丝网印刷机项目投资价值分析报告
- 2024年长方体棱长与表面积演示器项目可行性研究报告
- 2024年转叉式弹簧卸扣项目可行性研究报告
- 2024年硬质合金圆角刀项目可行性研究报告
- 高低压配电施工组织方案
- 0-6岁儿童心理行为发育初筛记录表
- JJF 1630-2017分布式光纤温度计校准规范
- GB/T 36964-2018软件工程软件开发成本度量规范
- GB/T 14650-2005船用辅锅炉通用技术条件
- GB 4806.7-2016食品安全国家标准食品接触用塑料材料及制品
- 三年级上册美术《美丽的花挂毯》课件
- 康奈尔笔记WORD模板(课堂笔记版)
- 反应堆结构课件4第四章一回路设备
- 记承天寺夜游(优秀课件)
- 老人去世生平简历范文(通用十八篇)
评论
0/150
提交评论