山西省忻州高级中学2024届高一上数学期末统考模拟试题含解析_第1页
山西省忻州高级中学2024届高一上数学期末统考模拟试题含解析_第2页
山西省忻州高级中学2024届高一上数学期末统考模拟试题含解析_第3页
山西省忻州高级中学2024届高一上数学期末统考模拟试题含解析_第4页
山西省忻州高级中学2024届高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州高级中学2024届高一上数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-42.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.3.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:)A.6天 B.7天C.8天 D.9天4.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或5.已知,并且是终边上一点,那么的值等于A. B.C. D.6.已知函数,在下列区间中,包含零点的区间是A. B.C. D.7.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.8.现在人们的环保意识越来越强,对绿色建筑材料的需求也越来越高.某甲醛检测机构对某种绿色建筑材料进行检测,一定量的该种材料在密闭的检测房间内释放的甲醛浓度(单位:)随室温(单位:℃)变化的函数关系式为(为常数).若室温为20℃时该房间的甲醛浓度为,则室温为30℃时该房间的甲醛浓度约为(取)()A. B.C. D.9.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.10.已知函数为奇函数,,若对任意、,恒成立,则的取值范围为()A. B.C. D.11.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.12.已知,则()A. B.7C. D.1二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.14.写出一个最小正周期为2的奇函数________15.如下图所示的正四棱台的上底面边长为2,下底面边长为8,高为3216.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围18.已知函数(1)判断函数f(x)的单调性,并用定义给出证明;(2)解不等式:;(3)若关于x方程只有一个实根,求实数m的取值范围19.已知集合,(1)若,求,;(2)若,求实数的取值范围20.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.21.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.22.已知函数且为自然对数的底数).(1)判断函数的奇偶性并证明(2)证明函数在是增函数(3)若不等式对一切恒成立,求满足条件的实数的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.2、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题3、B【解析】根据题意将给出的数据代入公式即可计算出结果【详解】因为,,,所以可以得到,由题意可知,所以至少需要7天,累计感染病例数增加至的4倍故选:B4、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程,故选:D﹒5、A【解析】由题意得:,选A.6、C【解析】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.7、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C8、D【解析】由题可知,,求出,在由题中的函数关系式即可求解.【详解】由题意可知,,解得,所以函数的解析式为,所以室温为30℃时该房间的甲醛浓度约为.故选:D.9、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.10、A【解析】由奇函数性质求得,求得函数的解析式,不等式等价于,由此求得答案.【详解】解:因为函数的定义域为,又为奇函数,∴,解得,∴,所以,要使对任意、,恒成立,只需,又,∴,即,故选:A.11、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.12、A【解析】利用表示,代入求值.【详解】,即,.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.14、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.15、6【解析】如下图所示,O'B'=2,OM=216、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以,解得故的取值范围为18、(1)f(x)在R上单调递增;证明见解析;(2);(3){-3}(1,+∞).【解析】(1)利用函数单调性的定义及指数函数的性质即得;(2)由题可得,然后利用函数单调性即得;(3)由题可得方程有且只有一个正数根,分m=1,m≠1讨论,利用二次函数的性质可得.【小问1详解】f(x)在R上单调递增;任取x1,x2∈R,且x1<x2,则∵∴,∴即∴函数f(x)在R上单调递增【小问2详解】∵,∵,∴,又∵函数f(x)在R上单调递增,∴,∴不等式的解集为【小问3详解】由可得,,即,此方程有且只有一个实数解令,则t>0,问题转化为:方程有且只有一个正数根①当m=1时,,不合题意,②当m≠1时,(i)若△=0,则m=-3或,若m=-3,则,符合题意;若,则t=-2,不合题意,(ii)若△>0,则m<-3或,由题意,方程有一个正根和一个负根,即,解得m>1综上,实数m的取值范围是{-3}(1,+∞)19、(1),(2)【解析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)20、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)欲证线面垂直,则需证直线垂直于平面内的两条相交直线.连接,可证得,从而可证得平面;(3)由(2)可知,为三棱锥的高,平面为三棱锥的底面,应用椎体体积公式即可求解.【详解】(1)证明:分别是的中点,又平面,平面平面(2)如图,连接,,是的中点,同理又,又平面(3)由(2)可知,为三棱锥的高,且,.【点睛】本题考查线面平行,线面垂直的判定定理以及椎体体积公式的应用,考查空间想象能力与思维能力,属中档题.21、(1);(2).【解析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,故在时有最小值为,故.所以实数的取值范围是.【点睛】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论