版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省榆林高新区第一中学2023年数学九上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°2.圆锥的底面半径是5cm,侧面展开图的圆心角是180°,圆锥的高是()A.5cm B.10cm C.6cm D.5cm3.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-104.如图,抛物线与直线交于,两点,与直线交于点,将抛物线沿着射线方向平移个单位.在整个平移过程中,点经过的路程为()A. B. C. D.5.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数和的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A.3 B.4 C.5 D.106.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.7.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.8.已知二次函数图象的一部分如图所示,给出以下结论:;当时,函数有最大值;方程的解是,;,其中结论错误的个数是A.1 B.2 C.3 D.49.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=60010.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:组别(cm)x<150150≤x<155155≤x<160160≤x<165x≥165频数22352185根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.75二、填空题(每小题3分,共24分)11.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.12.甲、乙两人在米短跑训练中,某次的平均成绩相等,甲的方差是,乙的方差是,这次短跑训练成绩较稳定的是___(填“甲”或“乙”)13.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为
________.14.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.15.抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为__________.16.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.17.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.18.底角相等的两个等腰三角形_________相似.(填“一定”或“不一定”)三、解答题(共66分)19.(10分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)20.(6分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶5次,成绩统计如下表:(1)甲、乙的平均成绩分别是多少?(2)甲、乙这5次比赛的成绩的方差分别是多少?(3)如果规定成绩较稳定者胜出,你认为谁应该胜出?说明你的理由;(4)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?21.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为,图①中m的值为;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.22.(8分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.(8分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.求作此残片所在的圆(不写作法,保留作图痕迹).24.(8分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.25.(10分)如图,中,,以为直径作,交于点,交的延长线于点,连接,.(1)求证:是的中点;(2)若,求的长.26.(10分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.2、A【解析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R,根据题意得2π•5,解得R=1.即圆锥的母线长为1cm,∴圆锥的高为:5cm.故选:A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.3、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【详解】解:把x=5代入方程得到25-3×5+m=0,
解得m=-1.
故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4、B【分析】根据题意抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,可得平移后的顶点坐标.设向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a,令x=2,y=(a-)²+,由0≤a≤4,推出y的最大值和最小值,根据点D的纵坐标的变化情形,即可解决问题.【详解】解:由题意,抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,∵抛物线=(x+1)²-1的顶点坐标为(-1,-1),设抛物线向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a令x=2,y=(3-a)²-1+a,∴y=(a-)²+,∵0≤a≤4∴y的最大值为8,最小值为,∵a=4时,y=2,∴8-2+2(2-)=故选:B【点睛】本题考查的是抛物线上的点在抛物线平移时经过的路程问题,解决问题的关键是在平移过程中点D的移动规律.5、C【分析】设P(a,0),由直线AB∥y轴,则A,B两点的横坐标都为a,而A,B分别在反比例函数图象上,可得到A点坐标为(a,-),B点坐标为(a,),从而求出AB的长,然后根据三角形的面积公式计算即可.【详解】设P(a,0),a>0,∴A和B的横坐标都为a,OP=a,将x=a代入反比例函数y=﹣中得:y=﹣,∴A(a,﹣);将x=a代入反比例函数y=中得:y=,∴B(a,),∴AB=AP+BP=+=,则S△ABC=AB•OP=××a=1.故选C.【点睛】此题考查了反比例函数,以及坐标与图形性质,其中设出P的坐标,表示出AB的长是解本题的关键.6、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.7、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.8、A【解析】由抛物线开口方向得到a<1,根据抛物线的对称轴为直线x==-1得b<1,由抛物线与y轴的交点位置得到c>1,则abc>1;观察函数图象得到x=-1时,函数有最大值;利用抛物线的对称性可确定抛物线与x轴的另一个交点坐标为(-3,1),则当x=1或x=-3时,函数y的值等于1;观察函数图象得到x=2时,y<1,即4a+2b+c<1.【详解】解:∵抛物线开口向下,∴a<1,∵抛物线的对称轴为直线x==-1,∴b=2a<1,∵抛物线与y轴的交点在x轴上方,∴c>1,∴abc>1,所以①正确;∵抛物线开口向下,对称轴为直线x=-1,∴当x=-1时,函数有最大值,所以②正确;∵抛物线与x轴的一个交点坐标为(1,1),而对称轴为直线x=-1,∴抛物线与x轴的另一个交点坐标为(−3,1),∴当x=1或x=-3时,函数y的值都等于1,∴方程ax2+bx+c=1的解是:x1=1,x2=-3,所以③正确;∵x=2时,y<1,∴4a+2b+c<1,所以④错误.故选A.【点睛】解此题的关键是能正确观察图形和灵活运用二次函数的性质,能根据图象确定a、b、c的符号,并能根据图象看出当x取特殊值时y的符号.9、C【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=1.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、D【分析】直接利用不低于155cm的频数除以总数得出答案.【详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:=0.1.故选:D.【点睛】本题考查了概率公式,正确应用概率公式是解题关键.二、填空题(每小题3分,共24分)11、【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为k,∴大正方形面积S=k×k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13k2-k2=12k2∴针尖落在阴影区域的概率为:.故答案为.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.12、乙【分析】根据方差的含义,可判断谁的成绩较稳定.【详解】在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是刻画数据的波动大小程度,方差越小,代表数据波动越小.因此,在本题中,方差越小,代表成绩越稳定,故乙的训练成绩比较稳定.【点睛】本题考查方差的概念和含义.13、【分析】采用列举法求概率.【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=1÷6=.故答案为:【点睛】本题考查概率的计算,题目比较简单.14、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.15、1【分析】易得顶点(2,-6),根据待定系数法,求出一次函数解析式,进而求出直线与坐标轴的交点,根据三角形的面积公式,即可求解.【详解】∵抛物线,∴顶点(2,-6),∵一次函数的图象经过点,∴,解得:k=,∴一次函数解析式为:,∴直线与坐标轴的交点坐标分别是:(0,3),(,0),∴一次函数图象与两坐标轴所围成的三角形面积=.故答案是:1.【点睛】本题主要考查二次函数和一次函数图象与平面几何的综合,掌握一次函数图象与坐标轴的交点坐标的求法,是解题的关键.16、90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×=90°;故答案为:90°.【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.17、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键18、一定【分析】根据等腰三角形的性质得到∠B=∠C,∠E=∠F,根据相似三角形的判定定理证明.【详解】如图:∵AB=AC,DE=EF,∴∠B=∠C,∠E=∠F,∵∠B=∠E,∴∠B=∠C=∠E=∠F,∴△ABC∽△DEF,故答案为一定.【点睛】本题考查的是相似三角形的判定、等腰三角形的性质,掌握两组角对应相等的两个三角形相似是解题的关键.三、解答题(共66分)19、米【分析】设AP=NP=x,在Rt△APM中可以求出MP=x,在Rt△BPM中,∠MBP=30°,求得x,利用MN=MP-NP即可求得答案.【详解】解:∵在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=x,在Rt△BPM中,tan∠MBP=,∵∠MBP=30°,AB=5,∴=,∴x=,∴MN=MP-NP=x-x=.答:广告牌的宽MN的长为米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.20、(1)=8(环),=8(环);(2),;(3)甲胜出,理由见解析;(4)见解析.【分析】(1)根据平均数的计算公式先求出平均数,
(2)根据方差公式进行计算即可;(3)根据方差的意义,方差越小越稳定,即可得出答案.(4)叙述符合题意,有道理即可【详解】(1)(环),(环)(2)(3)甲胜出.因为<,甲的成绩稳定,所以甲胜出.(4)如果希望乙胜出,应该制定的评判规则为:如果平均成绩相同,则命中满环(10环)次数多者胜出.(答案不唯一)【点睛】本题考查一组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.21、(1)40人;1;(2)平均数是15;众数16;中位数15.【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.22、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由见解析;(3)当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.【解析】试题分析:(1)由矩形的一边长为x、周长为16得出另一边长为8﹣x,根据矩形的面积公式可得答案;(2)由设计费为24000元得出矩形面积为12平方米,据此列出方程,解之求得x的值,从而得出答案;(3)将函数解析式配方成顶点式,可得函数的最值情况.试题解析:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷200=12(平方米),即=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵=,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题.23、见解析【分析】由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC的中垂线交直线CD于点O,则点O是弧ACB所在圆的圆心.【详解】作弦AC的垂直平分线交直线CD于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.【点睛】本题考查的是垂径定理的应用,熟知“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”是解答此题的关键.24、(1)(0≤t≤4);(2)t1=2,t2=;(2)经过点D的双曲线(k≠0)的k值不变,为.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);
(2)将PQ=代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;
(2)连接OB,交PQ于点D,过点D作DF⊥OA于点F,求得点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【详解】解:(1)过点P作PE⊥BC于点E,如图1所示.
当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4-t,2),
∴PE=2,EQ=|4-t-t|=|4-t|,
∴PQ2=PE2+EQ2=22+|4-t|2=t2-20t+21,
∴y关于t的函数解析式及t的取值范围:y=t2−20t+21(0≤t≤4);
故答案为:y=t2−20t+21(0≤t≤4).
(2)当PQ=时,t2−20t+21=()2
整理,得1t2-16t+12=0,
解得:t1=2,t2=.
(2)经过点D的双曲线y=(k≠0)的k值不变.
连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.
∵OC=2,BC=4,
∴OB==1.
∵BQ∥OP,
∴△BDQ∽△ODP,
∴,
∴OD=2.
∵CB∥OA,
∴∠DOF=∠OBC.
在Rt△OBC中,sin∠OBC=,cos∠OBC==,
∴OF=OD•cos∠OBC=2×=,DF=OD•sin∠OBC=2×=,
∴点D的坐标为(,),
∴经过点D的双曲线y=(k≠0)的k值为×=..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=时t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.25、(1)详见解析;(2).【分析】(1)根据题意得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第4课 古代的生产工具与劳作 课件高中历史统编版(2019)选择性必修二经济与社会生活
- 浙江省A9协作体2023-2024学年高二下学期期中考试历史试题
- 高三数学(理)一轮复习教师用书第三章三角函数解三角形
- 2023-2024学年全国小学四年级上数学人教版期末考卷(含答案解析)
- 2024年工程施工合同补充协议模板转让协议
- 三方委托贷款合同范本2024年
- 2024年德阳客运从业资格证理论考试题
- 2024年公司聘用人员保密协议
- 中小学生校外培训服务合同范本2024年
- 2024年广州客运从业资格证模拟考试试题答案解析
- 新教材高考化学一轮复习元素“位-构-性”推断技巧及元素周期律应用中的关键点课件(19张)
- 无机离子检测
- 五年级上册数学课件 - 三角形的面积 人教版(共16张PPT)
- 乳腺癌科普讲座课件
- 2022年《国民经济行业分类》
- 通止规设计公差自动计算表
- 实验二 油菜考种
- 胃癌淋巴结清扫ppt课件(PPT 39页)
- 06竣工财务决算审计工作底稿(试行)
- 人教版九年级初三上册期中考试化学试卷
- 电加热管制作工艺的设计
评论
0/150
提交评论