版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海复旦附中2023-2024学年高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.2.化简的值是A. B.C. D.3.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角4.已知,,则在方向上的投影为()A. B.C. D.5.已知函数的图像如图所示,则A. B.C. D.6.若正数x,y满足,则的最小值为()A.4 B.C.8 D.97.若,则的值为A.0 B.1C.-1 D.28.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}9.已知幂函数的图像过点,若,则实数的值为A. B.C. D.10.若点、、在同一直线上,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足:当时,,则______12.的定义域为________________13.已知函数,则=____________14.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.15.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________16.函数y=1-sin2x-2sinx的值域是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在长方体ABCD-A1B1C1D1中,求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC18.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值19.已知角是第三象限角,,求下列各式的值:(1);(2).20.设函数,且,函数(1)求的解析式;(2)若方程-b=0在[-2,2]上有两个不同的解,求实数b的取值范围21.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.2、B【解析】利用终边相同角同名函数相同,可转化为求的余弦值即可.【详解】.故选B.【点睛】本题主要考查了三角函数中终边相同的角三角函数值相同及特殊角的三角函数值,属于容易题.3、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等4、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.5、B【解析】本题首先可以通过图像得出函数的周期,然后通过函数周期得出的值,再然后通过函数过点求出的值,最后将带入函数解析式即可得出结果【详解】因为由图像可知,解得,所以,,因为由图像可知函数过点,所以,解得,取,,,所以,故选B【点睛】本题考查了三角函数的相关性质,主要考查了三角函数图像的相关性质,考查了三角函数的周期性的求法,考查计算能力,考查数形结合思想,是中档题6、C【解析】由已知可得,然后利用基本不等式可求得结果【详解】解:因为正数x,y满足,所以,当且仅当,即时取等号,所以的最小值为8,故选:C【点睛】此题考查基本不等式应用,利用了“1”的代换,属于基础题7、A【解析】由题意得a不等于零,或,所以或,即的值为0,选A.8、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.9、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.10、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、12【解析】根据偶函数定义,结合时的函数解析式,代值计算即可.【详解】因为是定义在上的偶函数,故可得,又当时,,故可得,综上所述:.故答案为:.12、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.13、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.14、或(答案不唯一)【解析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【点睛】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.15、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用16、[-2,2]【解析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【点睛】本题主要考查正弦函数的值域,二次函数的性质,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】(1)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(2)推导出BC⊥AB,BC⊥BB1,从而BC⊥平面ABB1A1,由此能证明平面ABB1A1⊥平面A1BC【详解】证明:(1)在长方体ABCD-A1B1C1D1中,∵AB∥A1B1,且AB⊄平面A1B1C,A1B1⊂平面A1B1C,∴AB∥平面A1B1C(2)在长方体ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC⊂平面A1BC,∴平面ABB1A1⊥平面A1BC【点睛】本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是基础题18、(1);(2),递增区间为;(3)或.【解析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x+),∴由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,即函数f(x)的递增区间为[kπ-,kπ+],k∈Z;(3)∵f(α)=2sin(2α+)=,即sin(2α+)=,∵α∈[0,π],∴2α+∈[,],∴2α+=或,∴α=或α=【点睛】关于三角函数图像需记住:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期关于正弦函数单调区间要掌握:当时,函数单调递增;当时,函数单调递减19、(1),(2)【解析】(1)由同角三角函数基本关系与诱导公式化简后求解(2)化为齐次式后由同角三角函数基本关系化简求值【小问1详解】,而角是第三象限角,故,则,【小问2详解】,将代入,原式20、(1),(2)【解析】(1);本题求函数解析式只需利用指数的运算性质求出a的值即可,(2)对于同时含有的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题试题解析:解:(1)∵,且∴∵∴(2)法一:方程为令,则-且方程为在有两个不同的解设,两函数图象在内有两个交点由图知时,方程有两不同解.法二:方程为,令,则∴方程在上有两个不同的解.设解得考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融电话客服培训
- 2024年办公出租花卉合同范本
- 二手立车设备买卖协议书范文
- 乡村农产品合作协议书范文范本
- 起重机械设备租用协议书范文
- 人教版英语八年级下册 Unit 5 Section A 3a-3c课堂学案
- 幼儿园家长会饮食交流方案
- 车间安全培训试题附参考答案【培优B卷】
- 土建项目部培训课件
- 水肥一体化在水资源管理中的重要性方案
- GB/T 2977-2024载重汽车轮胎规格、尺寸、气压与负荷
- 中考英语二轮专题复习+冠词和数词+导学案
- 期中测试卷(1-4单元) (试题)-2024-2025学年四年级上册数学人教版
- 广东省深圳市2024-2025学年上学期九年级数学期中复习试卷
- 小学三年级语文上册课外阅读叶圣陶鲤鱼的遇险
- jgj276-2012建筑施工起重吊装安全技术规程
- 2024年浙江省中考英语试题卷(含答案解析)
- 道法第二单元 成长的时空 单元测试 2024-2025学年统编版道德与法治七年级上册
- 融通财务公司招聘笔试题库2024
- 时代乐章第一课城市名片 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 汉语拼音3《b p m f》(分层作业)一年级语文上册同步高效课堂系列(统编版2024秋)
评论
0/150
提交评论