




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市理工附中等七校2024届高一上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个2.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A. B.C. D.3.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米4.函数f(x)=-4x+2x+1的值域是()A. B.C. D.5.已知,则化为()A. B.C.m D.16.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.97.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.下列四个函数,最小正周期是的是()A. B.C. D.9.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.310.已知幂函数是偶函数,则函数恒过定点A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.12.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________13.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______14.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.15.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)17.已知集合,(1)当时,求集合;(2)若,“”是“”的充分条件,求实数的取值范围18.已知.(1)化简;(2)若是第二象限角,且,求的值.19.已知集合且(1)若,求的值;(2)若,求实数组成的集合20.已知函数.(1)求函数的最小正周期和单调递增区间;(2)若当时,求的最大值和最小值及相应的取值.21.已知命题p:,q:,若p是q的必要不充分条件,求a的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键2、C【解析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式【详解】由函数图象知,,,解得,所以,所以函数;因为,所以,;解得,;又,所以;所以;将函数的图象向右平移个单位长度后,得的图象,即故选:3、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D4、A【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【点睛】本题考查利用换元法及二次函数求值域,是基础题5、C【解析】把根式化为分数指数幂进行运算【详解】,.故选:C6、D【解析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D7、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B8、C【解析】依次计算周期即可.【详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.9、B【解析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B10、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、1【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.12、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.13、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,14、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.15、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)3333辆/小时【解析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200]上取得最大值综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时17、(1)(2)【解析】(1)先化简集合A,由解得集合,然后利用并集运算求解.(2)根据“”是“”的充分条件,转化为求解.【小问1详解】由得:,即,当时,,所以.【小问2详解】因为,所以,由“”是“”的充分条件,则,则,实数的取值范围是.18、(1);(2).【解析】(1)根据诱导公式对进行化简即可(2)先由求得,再根据(1)的结论及同角三角函数关系式求解【详解】(1)(2),,∵是第二象限角,∴,【点睛】本题考查利用诱导公式进行化简,涉及利用同角三角函数关系由正弦值求余弦值,属综合基础题.19、(1),(2)【解析】(1)由得,,求得,再求得,从而得集合,最后可得值;(2)求得集合,由分类讨论可得值【小问1详解】因,,且,,所以,,所以,解得,所以.所以,所以,解得【小问2详解】若,可得,因为,所以.当,则;当,则;当,综上,可得实数a组成的集合为20、(1)最小正周期为,(2)最小值为-1,的值为,最大值为2,的值为【解析】(1)利用周期公式可得最小正周期,由的单调递增区间可得的单调递增区间;(2)由得,当,即时,函数取得最大值,当,即时,函数取得最小值可得答案.【小问1详解】函数的最小正周期为,令因为的单调递增区间是,由,解得,所以,函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国活性炭滤布数据监测研究报告
- 2025至2030年中国松针条数据监测研究报告
- 了解窄轨铁路道岔系列总体设计
- 2025至2030年中国搪缸砂条数据监测研究报告
- 2025至2030年中国抗静电周转箱数据监测研究报告
- 2025至2030年中国工作卡数据监测研究报告
- 2025至2030年中国奶精粉数据监测研究报告
- 2025至2030年中国塑料衣夹数据监测研究报告
- 2025至2030年中国发热材料数据监测研究报告
- 2025至2030年中国去内毛刺直缝焊管数据监测研究报告
- 化学计量学与化学分析技术考核试卷
- 2024关于深化产业工人队伍建设改革的建议全文解读课件
- 探究膜分离技术在水处理中的应用
- 洋流课件2024-2025学年高中地理人教版(2019)选择性必修一
- 2024-2025学年中职数学拓展模块一 (下册)高教版(2021·十四五)教学设计合集
- 电梯维保工程施工组织设计方案
- 2024-2030年中国消防行业市场发展分析及发展趋势与投资前景研究报告
- 外研版(2019) 必修第三册 Unit 2 Making a Difference教案
- 医院科研成果及知识产权管理规范
- DB32T-公路桥梁水下结构检测评定标准
- 高职药学专业《药物制剂技术》说课课件
评论
0/150
提交评论