上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含解析_第1页
上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含解析_第2页
上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含解析_第3页
上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含解析_第4页
上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市西延安中学2023-2024学年九年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=DB,若S△ADE=3,则S四边形DBCE=()A.12 B.15 C.24 D.272.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.3.小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是A. B. C. D.4.一元二次方程的根为()A. B. C. D.5.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°6.如图放置的几何体的左视图是()A. B. C. D.7.一元二次方程的一次项系数和常数项依次是()A.-1和1 B.1和1 C.2和1 D.0和18.如图,一段抛物线,记为抛物线,它与轴交于点;将抛物线绕点旋转得抛物线,交轴于点;将抛物线绕点旋转得抛物线,交轴于点.···如此进行下去,得到一条“波浪线”,若点在此“波浪线”上,则的值为()A. B. C. D.9.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.10.若x=2是关于x的一元二次方程x2﹣ax=0的一个根,则a的值为()A.1 B.﹣1 C.2 D.﹣211.在平面直角坐标系中,二次函数的图像向右平移2个单位后的函数为()A. B.C. D.12.下列成语所描述的事件是必然事件的是()A.守株待兔 B.瓮中捉鳖 C.拔苗助长 D.水中捞月二、填空题(每题4分,共24分)13.若方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,则a的值是_____.14.如图,一副含和角的三角板和拼合在一个平面上,边与重合,.当点从点出发沿方向滑动时,点同时从点出发沿射线方向滑动.当点从点滑动到点时,点运动的路径长为______.15.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.16.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.17.方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.18.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.三、解答题(共78分)19.(8分)计算或解方程:(1)(2)20.(8分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.21.(8分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.22.(10分)如图,在中,,,圆是的外接圆.(1)求圆的半径;(2)若在同一平面内的圆也经过、两点,且,请直接写出圆的半径的长.23.(10分)(问题情境)(1)古希腊著名数学家欧几里得在《几何原本》提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项.射影定理是数学图形计算的重要定理.其符号语言是:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则:(1)AC²=AB·AD;(2)BC²=AB·BD;(3)CD²=AD·BD;请你证明定理中的结论(1)AC²=AB·AD.(结论运用)(2)如图2,正方形ABCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,①求证:△BOF∽△BED;②若,求OF的长.24.(10分)A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.25.(12分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为;点的坐标为;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.26.已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.2、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.3、C【详解】∵10张卡片的数中能被4整除的数有:4、8,共2个,∴从中任意摸一张,那么恰好能被4整除的概率是故选C4、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.5、D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.6、C【分析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.【详解】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选C.【点睛】本题考查简单组合体的三视图.7、A【分析】找出2x2-x+1的一次项-x、和常数项+1,再确定一次项的系数即可.【详解】2x2-x+1的一次项是-x,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.8、D【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.【详解】∵一段抛物线:,∴图象与x轴交点坐标为:(0,0),(6,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得Cn.∴Cn的与x轴的交点横坐标为(6n,0),(6n+3,0),∴在C337,且图象在x轴上方,∴C337的解析式为:,当时,.即,故答案为D.【点睛】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.9、A【分析】根据扇形面积公式计算即可.【详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【点睛】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.10、C【分析】将x=2代入原方程即可求出a的值.【详解】将x=2代入x2﹣ax=0,∴4﹣2a=0,∴a=2,故选:C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.11、B【分析】根据“左加右减,上加下减”的规律,求出平移后的函数表达式即可;【详解】解:根据“左加右减,上加下减”得,二次函数的图像向右平移2个单位为:;故选B.【点睛】本题主要考查了二次函数与几何变换,掌握二次函数与几何变换是解题的关键.12、B【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件依次判定即可得出答案.【详解】解:A选项为随机事件,故不符合题意;

B选项是必然事件,故符合题意;

C选项为不可能事件,故不符合题意;

D选项为不可能事件,故不符合题意;

故选:B.【点睛】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.二、填空题(每题4分,共24分)13、-3【分析】根据一元二次方程的定义列方程求出a的值即可.【详解】∵方程(a-3)x|a|-1+2x-8=0是关于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案为:-3【点睛】本题考查一元二次方程的定义,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程;一般形式为ax2+bx+c=0(a≠0),熟练掌握定义是解题关键,注意a≠0的隐含条件,不要漏解.14、【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,【详解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm

如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED-CD=(12-6)cm

∴当点E从点A滑动到点C时,点D运动的路径长=2×(12-6)=(24-12)cm【点睛】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D的运动轨迹是本题的关键.15、【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.16、-1【解析】设另一根为,则1·=-1,解得,=-1,故答案为-1.17、1.【详解】解:,得x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=1.故答案是:118、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比则面积比∴∴故答案为:1.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.三、解答题(共78分)19、(1)5-;(2)x1=-2,x2=【分析】(1)利用完全平方差公式以及化简二次根式和代入特殊三角函数进行计算即可;(2)由题意观察原方程,可用因式分解法中十字相乘法或者公式法求解.【详解】(1)计算:解:原式=7-4++2××=7-4+2-2+=5-.(2)解法一:(2x-3)(x+2)=02x-3=0或x+2=0,x1=-2,x2=.解法二:a=2,b=1,c=-6,△=b2-4ac=12-4×2×(-6)=49,x=,x1=-2,x2=.【点睛】本题主要考查用因式分解法解一元二次方程以及实数的综合运算,涉及的知识点有特殊角的三角形函数值、完全平方差公式以及二次根式的分母有理化等.20、(1);(2).【分析】(1)将点代入中即可求出k的值,求得反比例函数的解析式;(2)根据题意列出方程组,根据点在第一象限解出方程组即可.【详解】(1)一次函数的图象经过点反比例函数的解析式为(2)由已知可得方程组,解得或经检验,当或时,,所以方程组的解为或∵点在第一象限∴【点睛】本题考查了一次函数和反比例函数的问题,掌握一次函数和反比例函数的性质、解二元一次方程组的方法是解题的关键.21、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G,∵点是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的边长为2,

当时,,∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,∴点的坐标是(-1,2),此时;

当直线与只有一个交点时,,消去y得到,由,可得,

解得:,同理,此时点M的坐标为:(),∴,

根据图象可知:当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.【点睛】本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.22、(1);(2)或【分析】(1)过点作,垂足为,连接,根据垂直平分线的性质可得在上,根据垂径定理即可求出BD,再根据勾股定理即可求出AD,设,根据勾股定理列出方程即可求出半径;(2)根据垂直平分线的判定可得点P在BC的中垂线上,即点P在直线AD上,然后根据点A和点P的相对位置分类讨论,然后根据勾股定理分别求出半径即可.【详解】(1)过点作,垂足为,连接∵,∴垂直平分∵∴点在的垂直平分线上,即在上.∵∴∵在中,,∴设,则∵在中,,∴,即解得,即圆的半径为.(2)∵圆也经过、两点,∴PA=PB∴点P在BC的中垂线上,即点P在直线AD上①当点P在A下方时,此时AP=2,如下图所示,连接PB∴PD=AD-AP=4根据勾股定理PB=;②当点P在A上方时,此时AP=2,如下图所示,连接PB∴PD=AD+AP=8根据勾股定理PB=.综上所述:圆的半径的长为或.【点睛】此题考查的是垂直平分线的判定及性质、勾股定理和垂径定理,掌握垂直平分线的判定及性质、勾股定理和垂径定理的结合、数形结合的数学思想和分类讨论的数学思想是解决此题的关键.23、(1)见解析;(2)①见解析;②【分析】(1)证明△ACD∽△ABC,即可得证;

(2)①BC2=BO•BD,BC2=BF•BE,即BO•BD=BF•BE,即可求解;②在Rt△BCE中,BC=3,BE=,利用△BOF∽△BED,即可求解.【详解】解:(1)证明:如图1,∵CD⊥AB,

∴∠BDC=90°,

而∠A=∠A,∠ACB=90°,

∴△ACD∽△ABC,

∴AC:AB=AD:AC,

∴AC²=AB·AD;

(2)①证明:如图2,

∵四边形ABCD为正方形,

∴OC⊥BO,∠BCD=90°,

∴BC2=BO•BD,

∵CF⊥BE,

∴BC2=BF•BE,

∴BO•BD=BF•BE,

即,而∠OBF=∠EBD,

∴△BOF∽△BED;

②∵在Rt△BCE中,BC=3,BE=,∴CE=,∴DE=BC-CE=2;

在Rt△OBC中,OB=BC=,∵△BOF∽△BED,∴,即,∴OF=.【点睛】本题为三角形相似综合题,涉及到勾股定理运用、正方形基本知识等,难点在于找到相似三角形,此类题目通常难度较大.24、(1);(2).【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论