上海市静安区新中高级中学2023-2024学年高一上数学期末含解析_第1页
上海市静安区新中高级中学2023-2024学年高一上数学期末含解析_第2页
上海市静安区新中高级中学2023-2024学年高一上数学期末含解析_第3页
上海市静安区新中高级中学2023-2024学年高一上数学期末含解析_第4页
上海市静安区新中高级中学2023-2024学年高一上数学期末含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区新中高级中学2023-2024学年高一上数学期末注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.2.已知函数的图象经过点,则的值为()A. B.C. D.3.若,则的最小值为()A. B.C. D.4.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④5.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减6.主视图为矩形的几何体是()A. B.C. D.7.设,则的值为()A.0 B.1C.2 D.38.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.9.把表示成,的形式,则的值可以是()A. B.C. D.10.函数的定义域是()A. B.C D.11.下列函数为奇函数的是A. B.C. D.12.下列函数中,图象的一部分如图所示的是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.14.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________15.函数y=cos2x-sinx的值域是__________________16.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.三、解答题(本大题共6小题,共70分)17.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.18.已知函数(且),在上的最大值为.(1)求的值;(2)当函数在定义域内是增函数时,令,判断函数的奇偶性,并证明,并求出的值域.19.已知集合,(1)时,求及;(2)若时,求实数a的取值范围20.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.21.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.22.(1)已知求的值(2)已知,且为第四象限角,求的值.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由题意有,可得,从而可得【详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:2、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.3、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.4、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.5、A【解析】根据函数奇偶性和单调性的定义判定函数的性质即可.【详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.6、A【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【点睛】本题主要考查简单几何体的正视图,属于基础题型.7、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.8、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C9、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B10、B【解析】解不等式组即可得定义域.【详解】由得:所以函数的定义域是.故选:B11、D【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D考点:函数的奇偶性12、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D二、填空题(本大题共4小题,共20分)13、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:14、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案15、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.16、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.三、解答题(本大题共6小题,共70分)17、(1),;(2).【解析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的坐标表示确定向量夹角余弦值.【详解】解法一:(1)由图可知.因为E是CD的中点,所以.(2)因为,为等边三角形,所以,,所以,所以,.设与的夹角为,则,所以在与夹角的余弦值为.解法二:(1)同解法一.(2)以A为原点,AD所在直线为x轴,过A且与AD垂直的直线为y轴建立平面直角坐标系,则,,,.因为E是CD的中点,所以,所以,,所以,.设与的夹角为,则,所以与夹角的余弦值为.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用18、(1)或(2)为偶函数,证明见解析,.【解析】(1)分别在和时,根据函数单调性,利用最大值可求得;(2)由(1)可得,根据奇偶性定义判断可知其为偶函数;利用对数型复合函数值域的求解方法可求得值域.【小问1详解】当时,为增函数,,解得:;当时,为减函数,,解得:;综上所述:或.【小问2详解】当函数在定义域内是增函数时,,由(1)知:;,由得:,即定义域为;又,是定义在上的偶函数;,当时,,,即的值域为.19、(1),(2)【解析】(1)先求出集合,,,然后结合集合的交、并运算求解即可;(2)由,得,然后结合集合的包含关系对B是否为空集进行分讨论,即可求解【小问1详解】∵由,得由题可知∴或∴∴;【小问2详解】∵,∴分两种情况考虑:时,,解得:时,则,解得:所以a取值范围为20、(1)-;(2)2.【解析】(1)若与共线,则存在实数,使得,根据,为两个不共线的向量可列出关于k和λ的方程组,求解方程组即可;(2)若,则,代入,根据向量数量积运算律即可计算.小问1详解】若与共线,则存在实数,使得,即,则且,解得;小问2详解】由题可知,,,若,则,变形可得:,即.21、(1);(2)证明见解析.【解析】(1)设幂函数,由得α的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论