版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市高中2023-2024学年高一上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.2.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)3.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.4.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.5.函数的最小值是()A. B.0C.2 D.66.实数,,的大小关系正确的是()A. B.C. D.7.若,则它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角8.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数9.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.10.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.11.函数,则A. B.4C. D.812.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.二、填空题(本大题共4小题,共20分)13.设,且,则的取值范围是________.14.不等式的解为______15.,的定义域为____________16.空间两点与的距离是___________.三、解答题(本大题共6小题,共70分)17.已知函数.(1)直接写出的单调区间,并选择一个单调区间根据定义进行证明;(2)解不等式.18.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.19.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.20.已知,(1)求和的值(2)求以及的值21.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.22.在国家大力发展新能源汽车产业政策下,我国新能源汽车的产销量高速增长.某地区年底新能源汽车保有量为辆,年底新能源汽车保有量为辆,年底新能源汽车保有量为辆(1)根据以上数据,试从(,且),,(,且),三种函数模型中选择一个最恰当的模型来刻画新能源汽车保有量的增长趋势(不必说明理由),设从年底起经过年后新能源汽车保有量为辆,求出新能源汽车保有量关于的函数关系式;(2)假设每年新能源汽车保有量按(1)中求得的函数模型增长,且传统能源汽车保有量每年下降的百分比相同,年底该地区传统能源汽车保有量为辆,预计到年底传统能源汽车保有量将下降.试估计到哪一年底新能源汽车保有量将超过传统能源汽车保有量.(参考数据:,)
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.2、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.3、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.4、A【解析】点,由中点坐标公式得中得为:,即.故选A.5、B【解析】时,,故选B.6、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、C【解析】根据象限角的定义判断【详解】因为,所以是第三象限角故选:C8、C【解析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C9、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性10、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.11、D【解析】因为函数,所以,,故选D.【思路点睛】本题主要考查分段函数的解析式、指数与对数的运算,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.本题解答分两个层次:首先求出的值,进而得到的值.12、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.二、填空题(本大题共4小题,共20分)13、【解析】由题意得,,又因为,则的取值范围是14、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:15、【解析】由,根据余弦函数在的图象可求得结果.【详解】由得:,又,,即的定义域为.故答案为:.16、【解析】根据两点间的距离求得正确答案.【详解】.故答案为:三、解答题(本大题共6小题,共70分)17、(1)在区间,上单调递增,在区间上单调递减,证明见解析(2)【解析】(1)根据增减函数的定义,利用作差法比较与0的大小即可;(2)根据三角函数的性质可得、,利用函数的单调性列出三角不等式,解不等式即可.【小问1详解】在区间,上单调递增,在区间上单调递减.①选区间进行证明.,,且,有,由,所以,由,所以,所以,,所以在区间上单调递增.②选区间进行证明.,,且,有,由,,所以,,所以在区间上单调递减.③选区间进行证明.参考②的证明,在区间上单调递增.【小问2详解】,因为,,在区间上单调递减,所以,(),所以,所求解集为.18、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.19、(1),,,;(2)零点为;(3)答案见解析.【解析】(1)根据解析式直接计算即可;(2)由可解得结果;(3)由(1)易知为非奇非偶函数,用定义证明是上的减函数.【详解】(1),,,.(2)令得,故,即函数的零点为.(3)由(1)知,,且,故为非奇非偶函数;是上的减函数.证明如下:()任取,且,则,因为当时,,则,又,,所以,即,故函数是上的减函数.20、(1),(2),【解析】(1)根据三角函数的基本关系式,准确运算,即可求解;(2)利用两角差的正弦公式和两角和的正切公式,准确运算,即可求解.【小问1详解】因为,根据三角函数的基本关系式,可得,又因为,所以,且.【小问2详解】由,和根据两角差的正弦公式,可得,再结合两角和的正切公式,可得21、(1);(2)【解析】(1)设二次函数f(x)=ax2+bx+c,利用待定系数法即可求出f(x);(2)利用一元二次不等式的解法即可得出【详解】(1).设二次函数f(x)=ax2+bx+c,∵函数f(x)满足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化为x2﹣3x﹣4>0化为(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集为【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.22、(1)应选择的函数模型是(,且),函数关系式为;(2)年底.【解析】(1)根据题中的数据可得出所选的函数模型,然后将对应点的坐标代入函数解析式,求出参数的值,即可得出函数解析式;(2)设传统能源汽车保有量每年下降的百分比为,根据题意求出的值,可得出设从年底起经过年后的传统能源
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料制品的计算机工程应用考核试卷
- 新能源与社会需求的机遇考核试卷
- 工业动火安全防护措施探讨考核试卷
- 2024年流态化干燥技术与设备项目合作计划书
- 班组常见设施设备安全隐患排查考核试卷
- 游乐园智能化技术与创新应用考核试卷
- 2024年PE电缆专用料项目建议书
- 2024年治疗精神障碍药项目合作计划书
- 市场部的安全生产职责
- 2024年煤制天然气项目建议书
- 2024年《论教育》全文课件
- 2024年中级消防员考试题库
- 2024年网络安全知识竞赛考试题库500题(含答案)
- GB/T 44230-2024政务信息系统基本要求
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- QCSG1204009-2015电力监控系统安全防护技术规范
- 人教版《平行四边形的面积》(完美版)课件
- 供应室提高腔镜器械清洗质量PDCA案例
- GB 38454-2019 坠落防护 水平生命线装置
- 基于MCGS组态软件和PLC的空气压缩机监控系统设计
- 论烟草专卖人员执法中存在的问题及对策
评论
0/150
提交评论