四川省德阳中江县联考2024届八上数学期末检测模拟试题含解析_第1页
四川省德阳中江县联考2024届八上数学期末检测模拟试题含解析_第2页
四川省德阳中江县联考2024届八上数学期末检测模拟试题含解析_第3页
四川省德阳中江县联考2024届八上数学期末检测模拟试题含解析_第4页
四川省德阳中江县联考2024届八上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省德阳中江县联考2024届八上数学期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确2.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.3.下列图形中,对称轴条数最多的图形是()A. B. C. D.4.若式子在实数范围内有意义,则x的取值范围是()A.x≥ B.x> C.x≥ D.x>5.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠46.若关于的分式方程无解,则的值是()A.3 B. C.9 D.7.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①② B.①②③ C.①③ D.②③8.下列条件中能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°9.如图,在中,,的垂直平分线交于点,交于点,连接,若,则的度数为()A.25° B.30° C.35° D.50°10.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°11.如果将分式y2x+y(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式yA.不改变 B.扩大为原来的9倍 C.缩小为原来的13 D.扩大为原来的312.如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:①;②;③;④MO平分,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.比较大小:__________514.如图,AD∥BC,E是线段AC上一点,若∠DAC=48°,∠AEB=80°,则∠EBC=_____度.15.点关于轴的对称点恰好落在一次函数的图象上,则_____.16.分式化为最简分式的结果是__________________.17.点A(2,-3)关于x轴对称的点的坐标是______.18.张小林从镜子里看到镜子对面墙上石英钟指示的时间是2点30分,则实际时间为____.三、解答题(共78分)19.(8分)在中,是角平分线,.(1)如图1,是高,,,则(直接写出结论,不需写解题过程);(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;(3)如图3,点在的延长线上,于,则与、之间的数量关系是(直接写出结论,不需证明).20.(8分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.21.(8分)计算与化简求值(1)计算:(2)先化简,再求值:,其中x=222.(10分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.23.(10分)(1)化简:(2)设S=,a为非零常数,对于每一个有意义的x值,都有一个S的值对应,可得下表:x…﹣3﹣2﹣113567…S…22…仔细观察上表,能直接得出方程的解为.24.(10分)如图,直线y=3x+5与x轴相交于点A,与y轴相交于点B,(1)求A,B两点的坐标;(2)过点B作直线BP与x轴相交于点P,且使OP=3OA,求的面积.25.(12分)如图1,平面直角坐标系中,直线与轴、轴分别交于点,,直线经过点,并与轴交于点.(1)求,两点的坐标及的值;(2)如图2,动点从原点出发,以每秒个单位长度的速度沿轴正方向运动.过点作轴的垂线,分别交直线,于点,.设点运动的时间为.①点的坐标为______.点的坐标为_______;(均用含的式子表示)②请从下面A、B两题中任选一题作答我选择________题.A.当点在线段上时,探究是否存在某一时刻,使?若存在,求出此时的面积;若不存在说明理由.B.点是线段上一点.当点在射线上时,探究是否存在某一时刻使?若存在、求出此时的值,并直接写出此时为等腰三角形时点的坐标;若不存在,说明理由.26.已知A、B两点在直线的同侧,试在上找两点C和D(CD的长度为定值),使得AC+CD+DB最短(保留作图痕迹,不要求写画法).

参考答案一、选择题(每题4分,共48分)1、A【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.【详解】解:如图1,垂直平分,,,而,,所以甲正确;如图2,,,∴四边形为平行四边形,,,而,,所以乙正确.故选:A.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.2、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.3、D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A选项图形有4条对称轴;B选项图形有5条对称轴;C选项图形有6条对称轴;D选项图形有无数条对称轴∴对称轴的条数最多的图形是D选项图形,故选:D.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴.4、A【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【详解】解:由题意得,,故选A.【点睛】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.5、D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.6、D【分析】根据分式方程的增根是使最简公分母为零的值,可得关于m的方程,根据解方程,可得答案.【详解】解:方程去分母得:,整理得:,∴,∵方程无解,∴,解得:m=-9.故选D.【点睛】本题考查了分式方程的解,利用分式方程的增根得出关于m的方程是解题关键.7、B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB,∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC,OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质8、A【解析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【详解】A.符合全等三角形的SSS,能作出唯一三角形,故该选项符合题意,B.AB+AC=BC,不符合三角形三边之间的关系,不能作出三角形;故该选项不符合题意,C.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,D.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,故选A.【点睛】此题主要考查由已知条件作三角形,应用了全等三角形的判定和三角形三边之间的关系.熟练掌握全等三角形的判定定理是解题关键.9、A【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF,设∠B=x,则△ABC的三个内角都可用含x的代数式表示,然后根据三角形的内角和定理可得关于x的方程,解方程即得答案.【详解】解:∵,∴∠B=∠C,∵EF垂直平分AB,∴FA=FB,∴∠B=∠BAF,设∠B=x,则∠BAF=∠C=x,,根据三角形的内角和定理,得:,解得:,即.故选:A.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.10、B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.11、A【解析】把x与y分别换为3x与3y,化简后判断即可.【详解】根据题意得:3y6x+3y则分式的值不改变,故选A.【点睛】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.12、B【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;

由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=30°,②正确;

作OG⊥MC于G,OH⊥MB于H,则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH,得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;

由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【详解】解:,∴,即,在和中,,,,,①正确;,由三角形的外角性质得:,,②正确;作于,于,如图所示:则,在和中,,,,平分,④正确;∵∠AOB=∠COD,

∴当∠DOM=∠AOM时,OM才平分∠BOC,

假设∠DOM=∠AOM,

∵△AOC≌△BOD,

∴∠COM=∠BOM,

∵MO平分∠BMC,

∴∠CMO=∠BMO,

在△COM和△BOM中,,∴△COM≌△BOM(ASA),

∴OB=OC,

∵OA=OB

∴OA=OC

与OA>OC矛盾,

∴③错误;正确的个数有3个;故选择:.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题(每题4分,共24分)13、<【分析】先确定的大小,再计算的大小,即可与5比较.【详解】∵5<6,∴4<<5,∴<5,故答案为:<.【点睛】此题考查实数的大小比较,确定无理数的大小是解题的关键.14、1【分析】根据平行线的性质求出∠ACB=∠DAC,再根据三角形外角的性质可得∠EBC的度数.【详解】解:∵AD∥BC,∠DAC=48°,∴∠ACB=∠DAC=48°,∵∠AEB=80°,∴∠EBC=∠AEB﹣∠ACB=1°.故答案为:1.【点睛】本题考查了平行线的性质以及三角形外角的性质,掌握基本性质是解题的关键.15、1【分析】先求出点关于轴的对称点,再代入一次函数即可求解.【详解】∵点关于轴的对称点为(-m,1)把(-m,1)代入得1=-3m+4解得m=1故答案为:1.【点睛】此题主要考查一次函数的坐标,解题的关键是熟知待定系数法的运用.16、【分析】根据被开方数不含分母;被开方数不含能开的尽方的因数或因式的二次根式为最简二次根式,进行化简即可。【详解】因为有意义,所以,所以【点睛】本题考查的是根式有意义的条件和最简二次根式的意义,能够判断出是解题的关键。17、(2,3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、9点1分【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【详解】解:2:1时,分针竖直向下,时针指2,3之间,根据对称性可得:与9:1时的指针指向成轴对称,故实际时间是9:1.故答案为:9点1分【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三、解答题(共78分)19、(1)11;(2)∠DEF=(∠C-∠B),证明见解析;(3)∠DEF=(∠C-∠B),证明见解析【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°-∠C,进而得出∠DAE=(∠C-∠B),由此即可解决问题.

(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B).

(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C-∠B)不变.【详解】(1)∵AD平分∠BAC,

∴∠CAD=∠BAC,

∵AE⊥BC,

∴∠CAE=90°-∠C,

∴∠DAE=∠CAD-∠CAE

=∠BAC-(90°-∠C)

=(180°-∠B-∠C)-(90°-∠C)

=∠C-∠B

=(∠C-∠B),

∵∠B=52°,∠C=74°,

∴∠DAE=(74°-52°)=11°;

(2)结论:∠DEF=(∠C-∠B).

理由:如图2,过A作AG⊥BC于G,

∵EF⊥BC,

∴AG∥EF,

∴∠DAG=∠DEF,

由(1)可得,∠DAG=(∠C-∠B),

∴∠DEF=(∠C-∠B);

(3)仍成立.

如图3,过A作AG⊥BC于G,

∵EF⊥BC,

∴AG∥EF,

∴∠DAG=∠DEF,

由(1)可得,∠DAG=(∠C-∠B),

∴∠DEF=(∠C-∠B),

故答案为∠DEF=(∠C-∠B).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,熟记各性质并准确识图是解题的关键.20、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.21、(1);(2),【分析】(1)先进行积的乘方运算,再进行单项式除以单项式运算即可得到结果;(2)先把除法转化为乘法,进行约分后,再进行同分母的减法运算即可化简,再把x=-1代入化简结果进行计算即可.【详解】解:(1)==;(2)=把x=2代入上式,得,原式.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.22、14【解析】根据勾股定理得AB=7,由旋转性质可得∠A′BA=90°,A′B=AB=7.继而得出AA′=14.【详解】∵点A(2,0),点B(0,3),∴OA=2,OB=3.在Rt△ABO中,由勾股定理得AB=7.根据题意,△A′BO′是△ABO绕点B逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=7,∴AA′=A'B2+A【点睛】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.23、(1);(2)x=7或x=﹣1【分析】(1)根据分式的混合运算顺序和运算法则化简即可得;(2)先从表格中选取利于计算的x、S的值代入,求出a的值,从而还原分式方程,解之可得.【详解】解:原式;将、代入,得:,则分式方程为,,则或,解得或,经检验或均为分式方程的解,故答案为:或.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤与注意事项.24、(1);(2)或【分析】(1)根据A、B点的坐标特征解答即可;(2)由OA=、OB=5,得到OP=3,分当点P在A点的左侧和右侧两种情况运用待定系数法解答即可.【详解】解:(1)已知直线y=3x+5,令x=0,得y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论