天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题含解析_第1页
天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题含解析_第2页
天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题含解析_第3页
天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题含解析_第4页
天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市南开区天大附中2023-2024学年数学八上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各点在函数的图象上的点的是()A. B. C. D.2.在,,,,中,分式的个数是()A.1 B.2 C.3 D.43.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形 B.对角线互相平分的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形 D.两组对边分别相等的四边形是平行四边形4.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为()A.(-1,0) B.(,0) C.(,0) D.(1,0)5.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.106.如图,与是两个全等的等边三角形,,下列结论不正确的是()A. B.直线垂直平分C. D.四边形是轴对称图形7.如图,在中,,,,则图中等腰三角形共有()个A.3 B.4 C.5 D.68.甲、乙、丙、丁4个人步行路程和花费时间如图所示,按平均值计算,则走得最慢的是()A.甲 B.乙 C.丙 D.丁9.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)10.周长38的三角形纸片(如图甲),,将纸片按图中方式折叠,使点与点重合,折痕为(如图乙),若的周长为25,则的长为()A.10 B.12 C.15 D.1311.计算12a2b4•(﹣)÷(﹣)的结果等于()A.﹣9a B.9a C.﹣36a D.36a12.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.分析下面式子的特征,找规律,三个括号内所填数的和是____________.,,7+(),15+(),(),…14.如图,中,,,、分别平分、,过点作直线平行于,交、于、,则的周长为______.15.如图,己知,点,,,…在射线ON上,点,,,…在射线OM上,,,,…均为等边三角形,若,则的边长为________.16.已知一个三角形的三条边长为2、7、,则的取值范围是_______.17.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).若△ABC与△ABD全等,则点D坐标为_____.18.一个等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的底边长为________三、解答题(共78分)19.(8分)知识背景我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题问题初探如图(1),△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连接AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连接BE,猜想BE和CD有怎样的数量关系,并说明理由.类比再探如图(2),△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连接BE,则∠EBD=.(直接写出答案,不写过程,但要求作出辅助线)方法迁移如图(3),△ABC是等边三角形,点D是BC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BD、BE、BC之间有怎样的数量关系?(直接写出答案,不写过程).拓展创新如图(4),△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.20.(8分)按要求完成下列各题(1)计算:(2)因式分解:(3)解方程:(4)先化简,再求值:,其中.21.(8分)如图,分别以△ABC的边AB,AC向外作两个等边三角形△ABD,△ACE.连接BE、CD交点F,连接AF.(1)求证:△ACD≌△AEB;(2)求证:AF+BF+CF=CD.22.(10分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.23.(10分)已知函数y=(m+1)x2-|m|+n+1.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?24.(10分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A1B1C1D1,并在对称轴AC上找出一点P,使PD+PD1的值最小.25.(12分)我们知道,任意一个正整数都可以进行这样的分解:(是正整数,且),在的所有这种分解中,如果两因数之差的绝对值最小,我们就称是的最佳分解,并规定.例如:18可以分解成,,,因为,所以是18的最佳分解,所以.(1)如果一个正整数是另外一个正整数的平方,我们称正整数是完全平方数.求证:对任意一个完全平方数,总有;(2)如果一个两位正整数,(,为自然数),交换其个位上的数与十位上的数,得到的新数减去原来的两位正整数所得的差为9,那么我们称这个为“求真抱朴数”,求所有的“求真抱朴数”;(3)在(2)所得的“求真抱朴数”中,求的最大值.26.已知在平面直角坐标系内的位置如图,,,、的长满足关系式.(1)求、的长;(2)求点的坐标;(3)在轴上是否存在点,使是以为腰的等腰三角形.若存在,请直接写出点的坐标,若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】先将四项各点的横坐标代入函数的解析式,求出其对应的纵坐标,然后逐项判断即可.【详解】A、令代入得,,此项不符题意B、令代入得,,此项不符题意C、令代入得,,此项符合题意D、令代入得,,此项不符题意故选:C.【点睛】本题考查了一次函数的图象与性质,掌握理解函数的图象与性质是解题关键.2、C【解析】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.3、B【分析】根据尺规作图可知AC,BD互相平分,即可判断.【详解】根据尺规作图可得直线垂直平分AC,再可得到AC,BD互相平分,故选B.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知尺规作图的特点.4、B【分析】由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【详解】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,-1),∴C的坐标为(1,1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得,∴直线BC的解析式为:y=2x-1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,∴此时|PA-PB|=|PC-PB|=BC取得最大值.故选:B.【点睛】本题考查轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.5、C【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:1-1<x<1+1,即3<x<5,∵x为整数,∴x的值为1.

三角形的周长为1+1+1=2.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.6、A【分析】根据与是两个全等的等边三角形,可得到,,,然后结合,先计算出的大小,便可计算出的大小,从而判定出AD与BC的位置关系及BE与DC的关系,同时也由于与是等腰三角形,也容易确定四边形ABCD的对称性.【详解】(1)∵与是两个全等的等边三角形∴,,∴∵∴∴,∴,所以选项A错误;(2)由(1)得:∴∴,所以选项C正确;(3)延长BE交CD于点F,连接BD.∵,∴∴∴即在与中∴∴∴,综上,BE垂直平分CD,所以答案B正确;(4)过E作,由得而和是等腰三角形,则MN垂直平分AD、BC,所以四边形ABCD是軕对称图形,所以选项B正确.故选:A【点睛】本题考查的知识点主要是等边三角形的性质,全等三角形的性质与判定,平行四边形的判定及其轴对称图形的定义,添加辅助线构造全等三角形是本题的难点.7、D【分析】根据等腰三角形的定义即可找到两个等腰三角形,然后利用等边对等角、三角形的内角和、三角形外角的性质求出图中各个角的度数,再根据等角对等边即可找出所有的等腰三角形.【详解】解:∵,,∴△ABC和△ADE都是等腰三角形,∠B=∠C=36°,∠ADE=∠AED=∴∠BAD=∠ADE-∠B=36°,∠CAE=∠AED-∠C=36°∴∠BAD=∠B,∠CAE=∠C∴DA=DB,EA=EC∴△DAB和△EAC都是等腰三角形∴∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°∴∠BAE=∠AED,∠CAD=∠ADE∴BA=BE,CA=CD∴△BAE和△CAD都是等腰三角形综上所述:共有6个等腰三角形故选D.【点睛】此题考查的是等腰三角形的性质及判定、三角形的内角和定理和三角形外角的性质,掌握等角对等边、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.8、B【分析】根据图中提供的数据分别求出甲、乙、丙、丁4个人的速度,再比较大小即可.【详解】解:由图可知,甲的速度为:1÷20=0.05(千米/分),乙的速度为:1÷40=0.025(千米/分),丙的速度为:3÷30=0.1(千米/分),丁的速度为4÷30=(千米/分),∵,∴乙的速度最慢,故选B.【点睛】本题主要是对时间路程图的考查,准确根据题意求出速度是解决本题的关键.9、B【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y).【详解】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:B.【点睛】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.10、B【分析】由折叠的性质可得AD=BD,由△ABC的周长为38cm,△DBC的周长为25cm,可列出两个等式,可求解.【详解】∵将△ADE沿DE折叠,使点A与点B重合,

∴AD=BD,

∵△ABC的周长为38cm,△DBC的周长为25cm,

∴AB+AC+BC=38cm,BD+CD+BC=AD+CD+BC=AC+BC=25cm,

∴AB=13cm=AC

∴BC=25-13=12cm

故选:B.【点睛】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.11、D【分析】通过约分化简进行计算即可.【详解】原式=12a2b4•(﹣)·(﹣)=36a.故选D.【点睛】本题考点:分式的化简.12、B【详解】可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.二、填空题(每题4分,共24分)13、11.1【分析】分别找到这列算式中的整数部分的规律与分式部分的规律即可求解.【详解】这列算式中的整数部分:1,1,7,15…1×2+1=1;1×2+1=7;7×2+1=15;后一个整数是前一个整数的2倍加上1;∴括号内的整数为15×2+1=11,÷2=;÷2=验证:÷2=;要填的三个数分别是:,,11,它们的和是:++11=11=11.1.故答案为:11.1.【点睛】本题分出整数部分和分数部分,各自找出规律,再根据规律进行求解.14、1【分析】根据分别平分,EFBC,得∠EBD=∠EDB,从而得ED=EB,同理:得FD=FC,进而可以得到答案.【详解】∵分别平分,∴∠EBD=∠CBD,∵EFBC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴ED=EB,同理:FD=FC,∴的周长=AE+AF+EF=AE+AF+ED+FD=AE+AF+EB+FC=AB+AC=6+7=1.故答案是:1.【点睛】本题主要考查角平分线和平行线的性质定理,掌握“双平等腰”模型,是解题的关键.15、32【分析】根据底边三角形的性质求出以及平行线的性质得出,以及,得出,,进而得出答案.【详解】解:△是等边三角形,,,,,,又,,,,,△、△是等边三角形,,,,,,,,,,,同理可得:,△的边长为,△的边长为.故答案为:.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出,,进而发现规律是解题关键.16、5x9【解析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和得:7−2<x<7+2,即5<x<9.17、(1,﹣1),(5,3)或(5,﹣1).【解析】试题分析:首先画出平面直角坐标系,然后根据三角形全等的性质进行求解.考点:三角形全等的应用.18、3cm【分析】根据等腰三角形的性质和构成三角形的条件分两种情况分类讨论即可求出答案.【详解】①当3cm是等腰三角形的底边时,则腰长为:cm,能够构成三角形;②当3cm是等腰三角形的腰长时,则底边长为:cm,不能构成三角形,故答案为:3cm.【点睛】本题考查了等腰三角形的性质和构成三角形的条件,要最短的两边之和大于第三边就能构成三角形,对于等腰三角形,要两腰之和大于底边就能构成三角形.三、解答题(共78分)19、问题初探:BE=CD,理由见解析;类比再探:∠EBD=90°,辅助线见解析;方法迁移:BC=BD+BE;拓展创新:∠EBD=120°,理由见解析【分析】问题初探:根据余角的性质可得∠BAE=∠CAD,然后可根据SAS证明△BAE≌△CAD,进而可得结论;类比再探:过点M作MF∥AC交BC于点F,如图(5),可得△BMF是等腰直角三角形,仿问题初探的思路利用SAS证明△BME≌△FMD,可得∠MBE=∠MFD=45°,进而可得结果;方法迁移:根据等边三角形的性质和角的和差关系可得∠BAE=∠CAD,然后可根据SAS证明△BAE≌△CAD,进而可得结论;拓展创新:过点M作MG∥AC交BC于点G,如图(6),易证△BMG是等边三角形,仿方法迁移的思路利用SAS证明△BME≌△GMD,可得∠MBE=∠MGB=60°,进而可得结论.【详解】解:问题初探:BE=CD.理由:如图(1),∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,AE=AD,∴△BAE≌△CAD(SAS),∴BE=CD;类比再探:在图(2)中过点M作MF∥AC交BC于点F,如图(5),则∠BMF=∠A=90°,∠BFM=∠C=45°,∴MB=MF,∵∠DME=∠BMF=90°,∴∠BME=∠DMF,∵MB=MF,ME=MD,∴△BME≌△FMD(SAS),∴∠MBE=∠MFD=45°;∴∠EBD=∠MBE+∠ABC=90°.故答案为:90°;方法迁移:BC=BD+BE.理由:如图(3),∵△ABC和△ADE是等边三角形,∴∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,AE=AD,∴△BAE≌△CAD(SAS),∴BE=CD,∴BC=BD+CD=BD+BE;拓展创新:∠EBD=120°.理由:在图(4)中过点M作MG∥AC交BC于点G,如图(6),则∠BMG=∠A=60°,∠BGM=∠C=60°,∴△BMG是等边三角形,∴BM=GM,∵∠DME=∠BMG=60°,∴∠BME=∠DMG,∵ME=MD,∴△BME≌△GMD(SAS),∴∠MBE=∠MGB=60°,∴∠EBD=∠MBE+∠MBG=120°.【点睛】本题是几何变换综合题,主要考查了等边三角形的判定和性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,添加辅助线构造全等三角形、灵活应用上述知识和类比的思想是解题的关键.20、(1);(2);(3)1.5;(4);.【分析】(1)先算乘方和乘法,最后合并同类项即可;(2)先提取公因式,然后再运用公式法分解因式即可;(3)先通过去分母化成整式方程,然后再解整式方程,最后检验即可;(4)先运用分式的运算法则化简,最后将a=2代入计算即可.【详解】解:(1);(2);(3)去分母得:1-(x-2)=x解得:x=1.5经检验x=1.5是原分式方程的根,所以,分式方程的解为x=1.5;(4)原式当时,原式.【点睛】本题考查了整式的四则混合运算、因式分解、解分式方程和分式的化简求值,掌握相关运算法则是解答本题的关键.21、(1)证明见解析;(2)证明见解析.【分析】(1)根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAB=60,根据全等三角形的判定定理即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论.【详解】(1)∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAB=60°,∴∠DAC=∠BAE=60°+∠BAC.在△ACD和△AEB中,∵,∴△ACD≌△AEB(SAS);(2)由(1)知∠CDA=∠EBA,如图∠1=∠2,∴180°﹣∠CDA﹣∠1=180°﹣∠EBA﹣∠2,∴∠DAB=∠DFB=60°,如图,延长FB至K,使FK=DF,连DK,∴△DFK为等边三角形,∴DK=DF,∴△DBK≌△DAF(SAS),∴BK=AF,∴DF=DK,FK=BK+BF,∴DF=AF+BF,又∵CD=DF+CF,∴CD=AF+BF+CF.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.22、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;

(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;

(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,

∴∠BAD=∠CAE,

在△ABD和△ACE中,,

∴△ABD≌△ACE;

(2)如图2,∵△ABC和△ADE是等边三角形,

∴AB=AC,AD=AE,∠BAC=∠DAE=60°,

∴∠BAD=∠CAE,

在△ABD和△ACE中,,

∴△ABD≌△ACE,

∴BD=CE,①正确,∠ADB=∠AEC,

记AD与CE的交点为G,

∵∠AGE=∠DGO,

∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,

∴∠DOE=∠DAE=60°,

∴∠BOC=60°,②正确,

在OB上取一点F,使OF=OC,

∴△OCF是等边三角形,

∴CF=OC,∠OFC=∠OCF=60°=∠ACB,

∴∠BCF=∠ACO,

∵AB=AC,

∴△BCF≌△ACO(SAS),

∴∠AOC=∠BFC=180°-∠OFC=120°,

∴∠AOE=180°-∠AOC=60°,③正确,

连接AF,要使OC=OE,则有OC=CE,

∵BD=CE,

∴CF=OF=BD,

∴OF=BF+OD,

∴BF<CF,

∴∠OBC>∠BCF,

∵∠OBC+∠BCF=∠OFC=60°,

∴∠OBC>30°,而没办法判断∠OBC大于30度,

所以,④不一定正确,

即:正确的有①②③,

故答案为①②③;

(3)如图3,

延长DC至P,使DP=DB,

∵∠BDC=60°,

∴△BDP是等边三角形,

∴BD=BP,∠DBP=60°,

∵∠BAC=60°=∠DBP,

∴∠ABD=∠CBP,

∵AB=CB,

∴△ABD≌△CBP(SAS),

∴∠BCP=∠A,

∵∠BCD+∠BCP=180°,

∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.23、(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−1时,这个函数是正比例函数.【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论