新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题含解析_第1页
新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题含解析_第2页
新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题含解析_第3页
新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题含解析_第4页
新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆阿克苏市第一师高级中学2023-2024学年数学高一上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.若两条平行直线与之间的距离是,则m+n=A.0 B.1C.-2 D.-12.已知函数的值域为R,则实数的取值范围是()A. B.C. D.3.已知直线经过点,倾斜角的正弦值为,则的方程为()A. B.C. D.4.设,则()A. B.aC. D.5.若直线与互相平行,则()A.4 B.C. D.6.若集合,则()A. B.C. D.7.设都是非零向量,下列四个条件中,一定能使成立的是()A. B.//C. D.8.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得9.已知命题:,,则()A.:, B.:,C.:, D.:,10.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.11.设扇形的周长为,面积为,则扇形的圆心角的弧度数是()A.1 B.2C.3 D.412.已知命题p:,,则为()A., B.,C., D.,二、填空题(本大题共4小题,共20分)13.函数的值域为___________.14.三条直线两两相交,它们可以确定的平面有______个.15.已知且,函数的图象恒经过定点,正数、满足,则的最小值为____________.16.在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度平均值为y,该小组通过对数据的整理和分析,得到y与x近似满足,则一个回归年对应的天数约为______(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期______.()三、解答题(本大题共6小题,共70分)17.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.18.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.19.已知全集,若集合,.(1)若,求,;(2)若,求实数的取值范围.20.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.21.2021年起,辽宁省将实行“3+1+2”高考模式,为让学生适应新高考的赋分模式某校在一次校考中使用赋分制给高三年级学生的化学成绩进行赋分,具体赋分方案如下:先按照考生原始分从高到低按比例划定A、B、C、D、E共五个等级,然后在相应赋分区间内利用转换公式进行赋分A等级排名占比15%,赋分分数区间是86-100;B等级排名占比35%,赋分分数区间是71-85;C等级排名占比35%,赋分分数区间是56-70;D等级排名占比13%,赋分分数区间是41-55;E等级排名占比2%,赋分分数区间是30-40;现从全年级的化学成绩中随机抽取100名学生的原始成绩(未赋分)进行分析,其频率分布直方图如图所示:(1)求图中a的值;(2)用样本估计总体的方法,估计该校本次化学成绩原始分不少于多少分才能达到赋分后的C等级及以上(含C等级)?(结果保留整数)(3)若采用分层抽样的方法,从原始成绩在[40,50)和[50,60)内的学生中共抽取5人,查看他们的答题情况来分析知识点上的缺漏,再从中选取2人进行调查分析,求这2人中恰有一人原始成绩在[40,50)内的概率.22.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点P(-3,4)(1)求,的值;(2)的值

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据直线平行得到,根据两直线的距离公式得到,得到答案.【详解】由,得,解得,即直线,两直线之间的距离为,解得(舍去),所以故答案选C.【点睛】本题考查了直线平行,两平行直线之间的距离,意在考查学生的计算能力.2、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.3、D【解析】由题可知,则∵直线经过点∴直线的方程为,即故选D4、C【解析】由求出的值,再由诱导公式可求出答案【详解】因为,所以,所以,故选:C5、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.6、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。7、D【解析】由得若,即,则向量共线且方向相反,因此当向量共线且方向相反时,能使成立,本题选择D选项.8、D【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】,都有的否定是,使得.故选:D9、C【解析】根据全称命题的否定是特称命题进行否定即可得答案.【详解】解:因为全称命题的否定为特称命题,所以命题:,的否定为::,.故选:C.10、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题11、B【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解.【详解】因为扇形的周长为,面积为,所以,解得,所以,所以扇形的圆心角的弧度数是2故选:B12、C【解析】全称命题的否定定义可得.【详解】根据全称命题的否定,:,.故选:C.二、填空题(本大题共4小题,共20分)13、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:14、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;15、9【解析】由指数函数的性质可得函数的图象恒经过定点,进而可得,然后利用基本不等式中“1”的妙用即可求解.【详解】解:因为函数的图象恒经过定点,所以,又、为正数,所以,当且仅当,即时等号成立,所以的最小值为9.故答案为:9.16、①.365.25②.四【解析】(1)利用周期公式求出一个回归年对应的天数;(2)先计算出4个回归年经过的天数,再根据周期即可求解.【详解】因为周期,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为.因为,且该年春分日是星期六,所以4个回归年后的春分日应该是星期四.故答案为:365.25;四.三、解答题(本大题共6小题,共70分)17、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:设AC与BD交于O点,连接EO则易得∠AEO为AE与面PDB所成的角∵E、O为中点∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE与面PDB所成角的大小为45°本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题18、(1)作图见解析(2)答案不唯一,具体见解析【解析】(1)根据指数函数描出几个特殊点,用平滑的曲线连接即可.(2)结合(1)中的图像,分析可得对于不同的值进行讨论即可求解.【详解】(1)(2)由图可知当时,;当时,当时,;当时,;当时,;所以当资金投资2年或4年时两种方案的回报总利润相同;当资金投资2年以内或4年以上,按照模型回报总利润为最大;当资金投资2年以上到4年以内,按照模型回报总利润最大.【点睛】本题考查了指数函数、二次函数模型的应用,属于基础题.19、(1),;(2).【解析】(1)求出集合,直接进行补集和并集运算即可求解;(2)由题意可得:,列出满足的不等关系即可求解.【详解】(1)(2),20、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.21、(1)a0.030;(2)54分;(3).【解析】(1)由各组频率和为1列方程即可得解;(2)由频率分布直方图结合等级达到C及以上所占排名等级占比列方程即可的解;(3)列出所有基本事件及满足要求的基本事件,由古典概型概率公式即可得解.【详解】(1)由题意,(0.0100.0150.015a0.0250.005)101,所以a0.030;(2)由已知等级达到C及以上所占排名等级占比为15%+35%+35%=85%,假设原始分不少于x分可以达到赋分后的C等级及以上,易得,则有(0.0050.0250.0300.015)10(60x)0.0150.85,解得x≈53.33(分),所以原始分不少于54分才能达到赋分后的C等级及以上;(3)由题知得分在[40,50)和[50,60)内的频率分别为0.1和0.15,则抽取的5人中,得分在[40,50)内的有2人,得分在[50,60)的有3人记得分在[50,60)内的3位学生为a,b,c,得分在[40,50)内的2位学生为D,E,则从5人中任选2人,样本空间可记为{ab,ac,aD,aE,bc,bD,bE,cD,cE,DE},共包含10个样本用A表示“这2人中恰有一人得分在[40,50)内”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论