版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区2024届八年级数学第一学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,在中,,,、分别是其角平分线和中线,过点作于点,交于点,连接,则线段的长为()A. B.1 C. D.72.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定3.对于不为零的实数a,b,现有一组式子:,–,0,,–,0……,则第2019个式子是()A.0 B. C.– D.–4.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=35.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A. B.C. D.6.已知中,比它相邻的外角小,则为A. B. C. D.7.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.8.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤9.如图,是的中线,E,F分别是和延长线上的点,且,连接,,下列说法:①和面积相等;②;③;④;⑤和周长相等.其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.20190等于()A.1 B.2 C.2019 D.0二、填空题(每小题3分,共24分)11.如图,木工师傅在做完门框后,为防止变形常常如图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的________.12.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他的步行速度为_____千米/小时.13.若x+y=5,xy=6,则x2+y2+2006的值是_____.14.如图,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是____.15.已知一次函数,当时,____________.16.张小林从镜子里看到镜子对面墙上石英钟指示的时间是2点30分,则实际时间为____.17.若a+b=﹣3,ab=2,则_____.18.禽流感病毒H7N9的直径约为0.00000003m,用科学记数法表示该数为__________m.三、解答题(共66分)19.(10分)如图,BN是等腰Rt△ABC的外角∠CBM内部的一条射线,∠ABC=90°,AB=CB,点C关于BN的对称点为D,连接AD,BD,CD,其中CD,AD分别交射线BN于点E,P.(1)依题意补全图形;(2)若∠CBN=α,求∠BDA的大小(用含α的式子表示);(3)用等式表示线段PB,PA与PE之间的数量关系,并证明.20.(6分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.21.(6分)如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线上,AC⊥BC且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)22.(8分)计算:(1)(2)23.(8分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.24.(8分)计算题(1)(2)25.(10分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.(1)求点A的坐标及直线的函数表达式;(2)连接,求的面积.26.(10分)如图,在等腰三角形中,,,是边的中点,点在线段上从向运动,同时点在线段上从点向运动,速度都是1个单位/秒,时间是(),连接、、.(1)请判断形状,并证明你的结论.(2)以、、、四点组成的四边形面积是否发生变化?若不变,求出这个值:若变化,用含的式子表示.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据角平分线的性质和垂直得出△ACG是等腰三角形,再根据三角形的中位线定理即可得出答案.【详解】∵AD是△ABC的角平分线,CG⊥AD于点F∴△ACG是等腰三角形∴F是CG边上的中点,AG=AC=3又AE是△ABC的中线∴EF∥AB,EF=BG又∵BG=AB-AG=1∴EF=BG=故答案选择A.【点睛】本题考查了三角形,难度适中,需要熟练掌握角平分线、中线和三角形的中位线定理.2、C【分析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得
BD===9,
在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.
②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.
故选:C.【点睛】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.3、A【分析】观察该组式子可以发现每三个一循环,且最后一个都为0,再根据2019是3的倍数可得结果.【详解】解:根据题意得:每三个式子中最后一个式子为0,而2019÷3=673,即第2019个式子是:0.故选A.【点睛】本题考查了代数式的规律,解答本题的关键仔细观察所给式子的特点,总结出规律,从而推出第n个式子.4、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.5、D【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x本资料,则这次买了(x+20)本,根据题意得:.故选:D.【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.6、B【解析】设构建方程求出x,再利用三角形的内角和定理即可解决问题.【详解】解:设.
由题意:,
解得,
,
,
故选:B.
【点睛】考查三角形的内角和定理,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.7、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.8、D【分析】根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2=,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.9、C【分析】由三角形中线的定义可得,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明和全等,判断出②正确,根据②得到,进而证明,判断出③正确,由为任意三角形,判断④⑤错误,问题得解.【详解】解:是的中线,,∵和底边BD,CD上高相同,和面积相等,故①正确;在和中,,,故②正确;,,故③正确;由为任意三角形,故④⑤错误.故选:.【点睛】本题考查了等底等高的三角形的面积相等,全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.10、A【分析】任意一个非零数的零次幂都等于1,据此可得结论.【详解】20190等于1,故选A.【点睛】本题主要考查了零指数幂,任意一个非零数的零次幂都等于1.二、填空题(每小题3分,共24分)11、稳定性【分析】根据“防止变形”的目的,联系三角形的性质,可得出答案.【详解】由三角形的稳定性可知,钉上两条斜拉的木条,可以防止变形,故答案是运用了三角形的稳定性.【点睛】本题考查了三角形稳定性的实际应用,熟练掌握三角形的性质即可完成.12、4【分析】先设他骑自行车的速度每小时走x千米,根据他步行12千米所用的时间与骑自行车36千米所用的时间相等,列出方程,求出方程的解即可求出骑自行车的速度,再根据步行速度=骑自行车速度-8可得出结论.【详解】设他骑自行车的速度每小时走x千米,根据题意得:=解得:x=12,经检验:x=12是原分式方程的解.则步行的速度=12-8=4.答:他步行的速度是4千米/小时.故答案为4.【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.13、1【分析】根据x+y=5,xy=6,利用完全平方公式将题目中的式子变形即可求得所求式子的值.【详解】解:∵x+y=5,xy=6,∴x2+y2+2006=(x+y)2−2xy+2006=52−2×6+2006=25−12+2006=1,故答案为:1.【点睛】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.14、1【详解】试题解析:∵菱形ABCD的对角线AC=6,BD=8,∴菱形的面积S=AC•BD=×8×6=1.考点:菱形的性质.15、【分析】把代入即可求解.【详解】把代入一次函数得-1=-2x+3解得x=2,故填:2.【点睛】此题主要考查一次函数的性质,解题的关键是熟知坐标与函数的关系.16、9点1分【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【详解】解:2:1时,分针竖直向下,时针指2,3之间,根据对称性可得:与9:1时的指针指向成轴对称,故实际时间是9:1.故答案为:9点1分【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.17、5【分析】将a+b=﹣3两边分别平方,然后利用完全平方公式展开即可求得答案.【详解】∵a+b=﹣3,∴(a+b)2=(﹣3)2,即a2+2ab+b2=9,又∵ab=2,∴a2+b2=9-2ab=9-4=5,故答案为5.【点睛】本题考查了根据完全平方公式的变形求代数式的值,熟练掌握完全平方公式的结构特征是解题的关键.18、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:根据科学记数法的定义:故答案为:.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.三、解答题(共66分)19、(1)补图见解析;(2)45°-α;(3)PA=2(PB+PE)..【解析】此题涉及的知识点是对称点的画法,角大小的求解,数量关系的证明,解答时第一问根据已知条件直接画图,连线;第二问根据对称图形性质可以算出角的大小;第三问证明两三角形全等就可以得到线段之间的关系。【详解】解:(1)如图所示:(2)∵∠ABC=90°∴∠MBC=∠ABC=90°∵点C关于BN的对称点为D∴BC=BD,∠CBN=∠DBN=α∵AB=BC∴AB=BD∴∠BAD=∠ADB=12180°-(3)猜想:PA=证明:过点B作BQ⊥BE交AD于Q∵∠BPA=∠DBN+∠ADB,∠ADB=45°-α,∠DBN=α∴∠BPA=∠DPE=45°∵点C关于BN的对称点为D∴BE⊥CD∴PD=2PE,PQ=2PB,∵BQ⊥BE,∠BPA=45°∴∠BPA=∠BQP=45°∴∠AQB=∠DPB=135°又∵AB=BD,∠BAD=∠ADB∴△AQB≌△BPD(AAS)∴AQ=PD∵PA=AQ+PQ∴PA=【点睛】此题重点考察学生对对称图形性质的理解,三角形全等的判定,抓住对称图形性质熟悉全等三角形的判定是解题的关键。20、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1),;证明过程见解析(2)成立【分析】(1)要证BQ=AP,可以转化为证明,要证明BQ⊥AP,可以证明∠QGA=,只要证出∠CBQ=∠CAP,∠GAQ+∠AQG=即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【详解】(1)BQ=AP,BQ⊥AP,理由:∵EF=FP,EF⊥FP,∴∠EPF=,又∵AC⊥BC,∴∠CQP=∠CPQ=,∴CQ=CP,在和中,,∴(SAS),∴BQ=AP.如下图,延长BQ交AP与点G,
∵,∴∠CBQ=∠CAP,在Rt△BCQ中,∠CBQ+∠CQB=,又∠CQB=∠AQG,∴∠GAQ+∠AQG=∠CBQ+∠CQB=,∴∠QGA=,∴BQ⊥AP,故BQ=AP,BQ⊥AP.(2)成立;理由:∵,∴,又∵,∴,∴CQ=CP,在和中,,
∴(SAS),∴BQ=AP,延长QB交AP于点N,如下图所示:
则,∵,∴,∵在Rt中,,又∵,∴,∴,∴,故,.【点睛】本题考查等腰三角形的性质、全等三角形的性质和判定及三角形的内角和定理等知识,解题的关键是证明三角形全等.22、(1)3-2;(2)4.5【解析】(1)按二次根式的相关运算法则结合绝对值的意义进行计算即可;(2)按实数的相关运算法则计算即可.【详解】解:(1)原式==(2)原式==4.523、(1)证明见解析;(2)1.【分析】(1)直接利用旋转的性质可得AP=AQ,∠PAQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC=∠APB=110°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机车车辆驱动电机性能分析考核试卷
- 药品零售行业法规动态分析-洞察分析
- 依赖关系在机器学习中的应用-洞察分析
- 2023-2024学年四川省乐山市高二上学期期末考试生物试题(解析版)
- 高三下学期工作计划
- 行业服务标准化建设-洞察分析
- 新型疫苗佐剂研究进展-洞察分析
- 拼音教学心得体会
- 2024年员工三级安全培训考试题审定
- 2023年-2024年新员工入职安全教育培训试题考题
- 基本光刻工艺流程
- 胸腔闭式引流护理-2023年中华护理学会团体标准
- 高中体育足球教学教案 全册
- 艺术概论PPT完整全套教学课件
- 社团啦啦操训练计划
- 2023-2024学年四川省雅安市小学语文二年级期末评估试题详细参考答案解析
- UPS维护保养检查表
- 英语人教新目标七年级上册微课PPT
- 2023年安全生产先进集体申报表
- 码头装卸作业风险辨识表
- 国家电网安全生产典型违章300条(含扣分)
评论
0/150
提交评论