版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆乌鲁木齐市第八十七中学2023-2024学年八上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列交通标志图案是轴对称图形的是()A. B. C. D.2.若(a+b)2=4,(a-b)2=6,则a2+b2的值为()A.25 B.16 C.5 D.43.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,134.如图,在中,、分别是、的中点,,是上一点,连接、,,若,则的长度为()A.11 B.12 C.13 D.145.一种新型病毒的直径约为0.000023毫米,用科学记数法表示为()毫米.A.0.23×10﹣6 B.2.3×106 C.2.3×10﹣5 D.2.3×10﹣46.如图,在和中,,,,那么的根据是()A. B. C. D.7.在,0,,这四个数中,为无理数的是()A. B.0 C. D.8.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条中线的交点9.-的相反数是()A.- B.- C. D.10.如果点在第四象限,那么m的取值范围是().A. B. C. D.二、填空题(每小题3分,共24分)11.满足的整数的和是__________.12.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于13.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=_____°.14.分解因式:3x3y﹣6x2y+3xy=_____.15.若a:b=1:3,b:c=2:5,则a:c=_____.16.如图所示,已知△ABC和△BDE均为等边三角形,且A、B、E三点共线,连接AD、CE,若∠BAD=39°,那么∠AEC=度.17.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.
18.已知点A(x,3)和B(4,y)关于y轴对称,则(x+y)2019的值为_____.三、解答题(共66分)19.(10分)求下列各式的值:(1)已知,求代数式的值;(2)已知a=,求代数式[(ab+1)(ab-2)-2a2b2+2](-ab)的值.20.(6分)计算:(1)计算:(2)计算:(3)先化简,再求值,其中.21.(6分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.22.(8分)已知.求:(1)的值;(2)代数式的值.23.(8分)如图1,△ABC是等边三角形,点D是AC边上动点,∠CBD=α,把△ABD沿BD对折,A对应点为A'.(1)①当α=15°时,∠CBA'=;②用α表示∠CBA'为.(2)如图2,点P在BD延长线上,且∠1=∠2=α.①当0°<α<60°时,试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②BP=8,CP=n,则CA'=.(用含n的式子表示)24.(8分)如图,点A,B,C的坐标分别为(1)画出关于y轴对称的图形.(2)直接写出点关于x轴对称的点的坐标.(3)在x轴上有一点P,使得最短,求最短距离是多少?25.(10分)请在下列横线上注明理由.如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.证明:∵(已知),∴(______),∴(______),∵(已知),∴(______),∵点到和的距离相等(已知),∴是的角平分线(______),∴(角平分线的定义),∴(______),即平分(角平分线的定义),∴点到和的距离相等(______).26.(10分)阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现与相等.”小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”......老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”(1)求证;(2)求证线段平分;(3)探究、、三条线段之间的数量关系,并加以证明.
参考答案一、选择题(每小题3分,共30分)1、B【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.2、C【分析】由可得答案.【详解】解:①,②①+②得:故选C.【点睛】本题考查了完全平方公式的应用,掌握两个完全平方公式的结合变形是解题的关键.3、D【解析】A选项:62+122≠132,故此选项错误;
B选项:32+42≠72,故此选项错误;
C选项:因为82+152≠162,故此选项错误;
D选项:52+122=132,故此选项正确.
故选D.【点睛】一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.4、B【分析】根据三角形中位线定理得到DE=8,由,可求EF=6,再根据直角三角形斜边上的中线等于斜边的一半,即可得到AC的长度.【详解】解:∵、分别是、的中点,,∴,∵,∴,∴EF=6,∵,EF是△ACF的中线,∴;故选:B.【点睛】本题考查了三角形的中位线定理,以及直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握所学的性质进行解题,正确求出EF的长度是关键.5、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000023=2.3×10﹣1.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、A【分析】求出∠DAC=∠BAE,根据SAS推出两三角形全等即可.【详解】∵,∴∠BAD+∠BAC=∠CAB+∠BAC,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS)故选A.【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7、C【解析】根据无理数的定义(无理数是指无限不循环小数)选出答案即可.【详解】解:无理数是,故选:C.【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义,注意:无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的根式.8、B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【点睛】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.9、D【解析】相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.【详解】根据相反数、绝对值的性质可知:-的相反数是.故选D.【点睛】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.10、D【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>,故选D.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.二、填空题(每小题3分,共24分)11、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.【点睛】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.12、6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等13、1.【详解】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=1°.考点:线段垂直平分线的性质;等腰三角形的性质.14、3xy(x﹣1)1.【分析】直接提取公因式3xy,再利用公式法分解因式得出答案.【详解】解:原式=3xy(x1﹣1x+1)=3xy(x﹣1)1.故答案为:3xy(x﹣1)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.15、2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.16、21【分析】根据△ABC和△BDE均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD≌△CBE,所以∠ADB=∠AEC,利用三角形内角和代入数值计算即可得到答案.【详解】解:∵△ABC和△BDE均为等边三角形,
∴∠ABC=∠DBE=60°,AB=BC,BE=BD,
∴∠CBD=60°,
∴∠ABD=∠CBE=120°,
在△ABD和△CBE中,∴△ABD≌△CBE,(SAS)
∴∠AEC=∠ADB,
∵∠ADB=180°-∠ABD-∠BAD=21°,
∴∠AEC=21°.【点睛】此题主要考查了三边及其夹角对应相等的两个三角形全等的判定方法以及全等三角形的对应角相等的性质,熟记特殊三角形的性质以及证明△ABD≌△CBE是解题的关键.17、100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,
∴∠1=∠A+∠ABO=50°+20°=70°,
∵∠ACO=30°,
∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.18、-1【解析】直接利用关于y轴对称点的性质,纵坐标相同,横坐标互为相反数得出x,y的值,进而得出答案.【详解】解:∵点A(x,3)和B(4,y)关于y轴对称,∴x=﹣4,y=3,∴(x+y)2019的值为:﹣1.故答案为:﹣1.【点睛】本题考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.三、解答题(共66分)19、(1),;(2),【分析】(1)代数式利用多项式乘以多项式、完全平方公式展开,去括号合并得到最简结果,将已知等式变形后代入计算即可求出值;(2)中括号内利用多项式乘以多项式展开,合并同类项后,再利用多项式除以单项式化成最简式,然后把的值代入计算即可.【详解】(1),∵,即,
∴原式;(2)[(ab+1)(ab-2)-2a2b2+2](-ab),∵,,∴原式.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20、(1)9;(1);(3),-1【分析】(1)根据平方根和立方根的性质进行化简,然后进行运算即可;(1)根据积的乘方,幂的乘方和同底数幂的除法进行运算即可;(3)根据多项式乘以多项式的运算法则,进行化简,再计算即可.【详解】解(1)原式=6+1+1=9;(1)原式;(3)原式==当3b-a=-1时原式=-1.【点睛】本题考查了平方根,立方根,积的乘方,幂的乘方,同底数幂的除法和多项式乘以多项式,掌握运算法则是解题关键.21、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【点睛】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解决此题的关键.22、(1);(2)2019【分析】(1)把x的值代入后,分母有理化化简即可;(2)由得到,平方得,再把原式中x2用代换,化简整理即可求解.【详解】(1)当时,;(2)∵,∴,∴,∴,.【点睛】本题考查二次根式的化简求值、整式的乘法运算,解答本题的关键是明确它们各自的计算方法.23、(1)①30°;②60°﹣2α;(2)①BP=AP+CP,理由见解析;②8﹣2n【分析】(1)先求出∠ABC=60°,得出∠ABD=60°﹣α,再由折叠得出∠A'BD=60°﹣α,即可得出结论;(2)①先判断出△BP'C≌△APC,得出CP'=CP,∠BCP'=∠ACP,再判断出△CPP'是等边三角形,得出PP'=CP;②先求出∠BCP=120°﹣α,再求出∠BCA'=60°+α,判断出点A',C,P在同一条直线上,即:PA'=PC+CA',再判断出△ADP≌△A'DP(SAS),得出A'P=AP,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠CBD=α,∴∠ABD=∠ABC﹣∠CBD=60°﹣α,由折叠知,∠A'BD=∠ABD=60°﹣α,∴∠CBA'=∠A'BD﹣∠CBD=60°﹣α﹣α=60°﹣2α,①当α=15°时,∠CBA'=60°﹣2α=30°,故答案为30°;②用α表示∠CBA'为60°﹣2α,故答案为60°﹣2α;(2)①BP=AP+CP,理由:如图2,连接CP,在BP上取一点P',使BP'=AP,∵△ABC是等边三角形,∴∠ACB=60°,BC=AC,∵∠1=∠2=α,∴△BP'C≌△APC(SAS),∴CP'=CP,∠BCP'=∠ACP,∴∠PCP'=∠ACP+∠ACP'=∠BCP'+∠ACP'=∠ACB=60°,∵CP'=CP,∴△CPP'是等边三角形,∴∠CPB=60°,PP'=CP,∴BP=BP'+PP'=AP+CP;②如图3,由①知,∠BPC=60°,∴∠BCP=180°﹣∠BPC﹣∠PBC=180°﹣60°﹣α=120°﹣α,由(1)知,∠CBA'=60°﹣2α,由折叠知,BA=BA',∵BA=BC,∴BA'=BC,∴∠BCA'=(180°﹣∠CBA')=[180°﹣(60°﹣2α)]=60°+α,∴∠BCP+∠BCA'=120°﹣α+60°+α=180°,∴点A',C,P在同一条直线上,即:PA'=PC+CA',由折叠知,BA=BA',∠ADB=∠A'DB,∴180°﹣∠ADB=180°﹣∠A'DB,∴∠ADP=∠A'DP,∵DP=DP,∴△ADP≌△A'DP(SAS),∴A'P=AP,由①知,BP=AP+CP,∵BP=8,CP=n,∴AP=BP﹣CP=8﹣n,∴A'P=8﹣n,∴CA'=A'P﹣CP=8﹣n﹣n=8﹣2n,故答案为:8﹣2n.【点睛】此题是几何变换综合题,主要考查了折叠的性质,全等三角形的判定和性质,等边三角形的判定和性质,构造出全等三角形是解本题的关键.24、(1)图见解析;(2)(2,-3);(3).【分析】(1)分别作出点A、B、C关于y轴的对称点,再首尾顺次连接即可;(2)先根据的位置得出的坐标,再根据关于x轴对称的点的横坐标相等、纵坐标互为相反数求解即可;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度体育场馆消防给水施工合同3篇
- 2024年度物业管理服务合同中的服务费用
- 2024年度委托合同标的及受托人职责详细描述
- 《S企业培训教材》课件
- 2024年度股权转让合同标的为互联网公司股权
- 《齿轮加工机床》课件
- 2024年度玛雅租房合同范例下载
- 2024年度茶山管理委托服务合同
- 2024年度企业融资借款合同范本编纂
- 2024年度租赁合同中的维修责任界定
- 华为的冬天 全文
- GB/T 27996-2011全地面起重机
- 主题班会《今天你快乐吗》PPT
- GB/T 22055.1-2008显微镜物镜螺纹第1部分:RMS型物镜螺纹(4/5 in×1/36 in)
- 【课件】校本课程:小木匠
- 企业管理资料范本-车辆管理档案(一车一档)
- 安全文明建筑施工现场标识牌
- PPT用中国地图(可编辑)
- 上海英皇明星城项目初步建议
- 教育科学版小学科学四年级下册教学课件1-6《果实和种子》
- 病人入院与出院流程课件
评论
0/150
提交评论