版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省华宁二中2024届数学高一上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.2.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.若函数是定义域为的奇函数,且当时,,则当时,()A. B.C. D.4.若,则的大小关系为()A. B.C. D.5.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a6.已知向量,则锐角等于A.30° B.45°C.60° D.75°7.圆与直线相交所得弦长为()A.1 B.C.2 D.28.设,则a,b,c的大小关系是A. B.C. D.9.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.10.已知,则的最小值是()A.2 B.C.4 D.11.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型12.若直线与圆相切,则的值是()A.-2或12 B.2或-12C.-2或-12 D.2或12二、填空题(本大题共4小题,共20分)13.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________14.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)15.已知点在角的终边上,则___________;16.函数的最小正周期是__________三、解答题(本大题共6小题,共70分)17.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围18.已知集合且(1)若,求的值;(2)若,求实数组成的集合19.设有一条光线从射出,并且经轴上一点反射.(1)求入射光线和反射光线所在的直线方程(分别记为);(2)设动直线,当点到的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.20.2020年12月26日,我国首座跨海公铁两用桥、世界最长跨海峡公铁两用大桥——平潭海峡公铁两用大桥全面通车.这是中国第一座真正意义上的公铁两用跨海大桥,是连接福州城区和平潭综合实验区的快速通道,远期规划可延长到,对促进两岸经贸合作和文化交流等具有重要意义.在一般情况下,大桥上的车流速度(单位:千米/时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,将造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/时,研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.21.在平行四边形中,过点作的垂线交的延长线于点,.连结交于点,如图1,将沿折起,使得点到达点的位置.如图2.证明:直线平面若为的中点,为的中点,且平面平面求三棱锥的体积.22.已知.(1)化简;(2)若,求的值.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.2、A【解析】分别讨论充分性与必要性,可得出答案.详解】由题意,,显然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要条件.故选:A.【点睛】本题考查充分不必要条件,考查不等式的性质,属于基础题.3、D【解析】设,由奇函数的定义可得出,即可得解.【详解】当时,,由奇函数的定义可得.故选:D.4、D【解析】根据对数的运算性质以及指数函数和对数函数的单调性即可判断【详解】因为,而函数在定义域上递增,,所以故选:D5、B【解析】结合指数函数、幂函数的单调性确定正确选项.【详解】在上递增,在上递增..故选:B6、B【解析】因为向量共线,则有,得,锐角等于45°,选B7、D【解析】利用垂径定理可求弦长.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,故弦长为:,故选:D.8、D【解析】运用对数函数、指数函数的单调性,利用中间值法进行比较即可.【详解】,因此可得.故选:D【点睛】本题考查了对数式、指数式之间的大小比较问题,考查了对数函数、指数函数的单调性,考查了中间值比较法,属于基础题.9、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D10、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.11、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.12、C【解析】解方程即得解.【详解】解:由题得圆的圆心坐标为半径为1,所以或.故选:C二、填空题(本大题共4小题,共20分)13、【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为.14、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④15、##【解析】根据三角函数得定义即可的解.【详解】解:因为点在角的终边上,所以.故答案为:.16、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题18、(1),(2)【解析】(1)由得,,求得,再求得,从而得集合,最后可得值;(2)求得集合,由分类讨论可得值【小问1详解】因,,且,,所以,,所以,解得,所以.所以,所以,解得【小问2详解】若,可得,因为,所以.当,则;当,则;当,综上,可得实数a组成的集合为19、(1)(2)【解析】(1)由入射光线与反射光线的关系可知关于轴对称故斜率互为相反数(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.设所围三角形的内切圆的方程为,则,解得试题解析:(1)∵,∴.∴入射光线所在的直线的方程为.∵关于轴对称,∴反射光线所在的直线的方程为.(2)∵恒过点,∴作于,则,∴当时最大.即,时点到的距离最大.∵,∴,∴的方程为.设所围三角形的内切圆的方程为,则,解得(或舍去),∴所求的内切圆方程为.20、(1)(2)车流密度为110辆/千米时,车流量最大,最大值为6050辆/时【解析】(1)根据题意,当时,设,进而待定系数得,故;(2)结合(1)得,再根据二次函数模型求最值即可.【小问1详解】解:当时,设则,解得:所以【小问2详解】解:由(1)得,当时,当时,,∴当时,的最大值为∴车流密度为110辆/千米时,车流量最大,最大值为6050辆/时21、(1)见解析;(2)【解析】(1)在平面图形内找到,则在立体图形中,可证面.(2)解法一:根据平面平面,得到平面,得到到平面的距离,根据平面图形求出底面平的面积,求得三棱锥的体积.解法二:找到三棱锥的体积与四棱锥的体积之间的关系比值关系,先求四棱锥的体积,从而得到三棱锥的体积.【详解】证明:如图1,中,所以.所以也是直角三角形,,如图题2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中点为,连结则平面,即为三棱锥的高..解法二:平面平面,且平面平面,平面,平面.为的中点,三棱锥的高等于.为的中点,的面积是四边形的面积的,三棱锥的体积是四棱锥的体积的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升表达能力课程设计
- 包装材料质量手册第一版(一)
- 特殊计算器课程设计c
- 2024年药房管理制度
- PEP小学英语三年级上册Unit1 PartA Let's talk 同步课时练
- 财务工作总结应收账款与付款管理
- 导演行业人事工作总结
- 研究所保安工作总结
- 聚焦业绩提升的年度工作方案计划
- 股份接受协议三篇
- 中考语文真题专题复习 小说阅读(第01期)(解析版)
- GB 45067-2024特种设备重大事故隐患判定准则
- 《陆上风电场工程概算定额》NBT 31010-2019
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 幸福创业智慧树知到期末考试答案章节答案2024年山东大学
- 2023 版《中国近现代史纲要》 课后习题答案
- 2023-2024学年湖北省数学三年级第一学期期末统考试题含答案
- LNG安全技术说明书
- 日本陆上自卫队编制及其驻地
- 社会主义核心价值观—文明”主题班会教案
- 十二缘起支:生命轮回的次序PPT课件
评论
0/150
提交评论