云南省金平县第一中学2024届数学高一上期末监测模拟试题含解析_第1页
云南省金平县第一中学2024届数学高一上期末监测模拟试题含解析_第2页
云南省金平县第一中学2024届数学高一上期末监测模拟试题含解析_第3页
云南省金平县第一中学2024届数学高一上期末监测模拟试题含解析_第4页
云南省金平县第一中学2024届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省金平县第一中学2024届数学高一上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若在上单调递减,则的取值范围是().A. B.C. D.2.要得到的图象,需要将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.函数的图像大致为()A. B.C. D.4.在平面直角坐标系中,直线的斜率是()A. B.C. D.5.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与6.函数的图象的一个对称中心为()A. B.C. D.7.已知直线与圆交于A,两点,则()A.1 B.C. D.8.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A. B.C. D.9.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.1010二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______12.已知,且的终边上一点P的坐标为,则=______13.若函数在区间[2,3]上的最大值比最小值大,则__________.14.已知集合,若,则_______.15.已知=-5,那么tanα=________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.求函数的定义域,并指出它的单调性及单调区间17.已知集合,集合或,全集(1)若,求;(2)若,求实数a的取值范围18.已知集合,(1)当时,求;(2)若,求的取值范围19.已知函数的最小正周期为.(1)求的值和的单调递增区间;(2)令函数,求在区间上的值域.20.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.21.解答题(1);(2)lg20+log10025

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.2、D【解析】由“左加右减上加下减”的原则可确定函数到的路线,进行平移变换,推出结果【详解】解:将函数向右平移个单位,即可得到的图象,即的图象;故选:【点睛】本题主要考查三角函数的平移.三角函数的平移原则为“左加右减上加下减”.注意的系数,属于基础题3、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.5、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A6、C【解析】根据正切函数的对称中心为,可求得函数y图象的一个对称中心【详解】由题意,令,,解得,,当时,,所以函数的图象的一个对称中心为故选C【点睛】本题主要考查了正切函数的图象与性质的应用问题,其中解答中熟记正切函数的图象与性质,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C8、D【解析】根据斜二测画法的规则,得出该平面图象的特征,结合面积公式,即可求解.【详解】由题意,根据斜二测画法规则,可得该平面图形是上底长为,下底长为,高为的直角梯形,所以计算得面积为.故选:D.9、A【解析】求解出成立的充要条件,再与分析比对即可得解.【详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【点睛】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.10、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据三角函数图象的变换可得答案.【详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:12、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:13、【解析】函数在上单调递增,∴解得:故答案为14、【解析】根据求得,由此求得.【详解】由于,所以,所以.故答案为:15、-【解析】由已知得=-5,化简即得解.【详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【点睛】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、答案见解析【解析】由题,解不等式得定义域,再根据,利用整体代换法求解函数的单调递减区间即可.【详解】解:要使函数有意义,应满足,解得∴函数定义域为.∵,∴,解得,∴函数的单调递减区间为.17、(1)(2)【解析】(1)利用并集和补集运算法则进行计算;(2)根据集合间的包含关系,比较端点值的大小,求出实数a的取值范围.【小问1详解】当时,,所以,则;【小问2详解】因为A真含于B,所以满足或,解得:,所以实数a的取值范围是18、(1);(2).【解析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.19、(1),函数单调递增区间:,;(2).【解析】(1)利用函数的周期求解,得到函数的解析式,然后求解函数的单调增区间;(2)由题得,再利用三角函数的图象和性质求解.【详解】解:(1)函数的最小正周期.可得,,所以,所以函数,由,,所以,,可得,,所以函数单调递增区间:,(2)由题得,因为所以所以所以函数在区间上的值域为.20、(1)是偶函数,证明见解析(2)证明见解析【解析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论