版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页专题07一线三等角模型中档大题与压轴题真题分类(解析版)基础模型已知:点P在线段AB上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)结论1:△APC≌△BDP已知:点P在线段AB的延长线上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)结论2:△APC≌△BDP模型拓展已知:点P在线段AB上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)已知:点P在线段AB的延长线上,∠1=∠2=∠3,且AP=BD(或AC=BP或CP=PD)结论3:△APC≌△BDP结论4:△APC≌△BDP专题简介:本份资料包含一线三等角模型常考的中档大题、一线三等角模型常规压轴题、坐标系中的三垂直模型类压轴题,所选题目源自各名校期中、期末试题中的典型考题。适合于培训机构的老师给学生作专题复习培训时使用或者冲刺压轴题高分时刷题使用。题型1:一线三等角模型中档大题1.如图,,,且.(1)试说明:是等腰直角三角形;(2)若,求的度数.【解答】证明:(1)在△ABE与△ECD中,,∴△ABE≌△ECD(ASA),∴AE=ED,∵∠BAE+∠AEB=90°,∴∠AEB+∠CED=90°,∴△AED是等腰直角三角形;(2)∵△ABE≌△ECD,∴∠AEB=∠CDE,∵∠AEB+∠BAE=90°,∵∠CDE=2∠BAE,∴2∠BAE+∠BAE=90°,∴∠BAE=30°,∴∠CDE=60°.2.如图,在△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.若BC=BD,求证:CD=DE.【解答】证明:∵AC=BC,∴∠A=∠B,∵AC=BCBC=BD,∴AC=BD,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=∠A,∴∠ACD=∠BDE,在△ACD与△BDE中,,∴△ACD≌△BDE(ASA),∴CD=DE.
3.(雅礼)如图,在△中,,点是边上一点,,点在边上.(1)若,求证:①;②;(2)若,,求的度数.【解答】(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA),∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°.4.如图,,,,,垂足分别为,,,求,求的长.【解答】解:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°,∴∠ACD+∠CAD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠BCE=∠CAD,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS),∴CD=BE=1(cm),CE=AD=2.5(cm),∴DE=CE﹣CD=2.5﹣1=1.5(cm).5.已知,如图①,在△ABC中,∠BAC=90∘,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D.
E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D.A.
E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由。【解答】解:(1)DE=BD+CE,理由如下:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立,理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠ADB=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE。6.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.【解答】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DEB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.题型2:一线三等角模型常规压轴题7.(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC=(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.【解答】解:(1)∵BD⊥m,CE⊥m,∴∠DAB+∠ABD=90°,∠ADB=∠AEC,∵∠BAC=90°,∴∠DAB+∠EAC=90°,∴∠ABD=∠EAC,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴BD+CE=AD+AE=DE;(2)补充∠BAC=α,理由如下:∵∠ADB=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)补充∠ADB=∠AEC=180°﹣α,理由如下:∵∠ADB=180°﹣α,∴∠ABD+∠BAD=α,∵∠BAD+∠CAE=α,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AE=BD,CE=AD,∴BD+DE=AE+DE=AD=CE;
8.已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.【详解】证明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE与△ABD中,∴△CAE≌△ABD(AAS),∴AE=BD;(2)连接AH,∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH与△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°,即∠EHD=90°,∴∠EDH=∠DEH=;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,交HR的延长线于点T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG与△HER中,,∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT与△MFH中,,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.9.如图(1),已知中,,;是过的一条直线,且,在的异侧,于,于.求证:;若直线绕点旋转到图(2)位置时(),其余条件不变,问与,的数量关系如何?请给予证明.(3)若直线绕点旋转到图(3)位置时(),其余条件不变,问与,的数量关系如何?请直接写出结果,不需证明;.【解答】解:(1)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=AE,AD=EC,∴BD=DE+CE.(2)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=AE,AD=EC,∴BD=DE﹣CE.(3)同(2)的方法得出,BD=DE﹣CE.10.如图,中,,,点为射线上一动点,连结,作且.(1)如图1,过点作交于点,求证:;(2)如图2,连结交于点,若,,求证:点为中点.(3)当点在射线上,连结与直线交于点,若,,则______.(直接写出结果)【解答】解:(1)证明:∵FD⊥AC,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,,∴△AFD≌△EAC(AAS),∴DF=AC,∵AC=BC,∴FD=BC;
(2)作FD⊥AC于D,由(1)得,FD=AC=BC,AD=CE,在△FDG和△BCG中,,∴△FDG≌△BCG(AAS),∴DG=CG=1,
∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴,同理,当点E在线段BC上时,,故答案为:或.题型3:坐标系中的三垂直模型类压轴题11.(广益)已知:如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,求出S△POM+S△BOM的值.【解答】解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中,∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,﹣2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°﹣45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.12.(师大)已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH,∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4);(2)OA=CD+OD.理由如下:如图2,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBD=90°,∵∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,∴△ABO≌△BCD,∴OB=CD,OA=BD,而BD=OB+OD=CD+OD,∴OA=CD+OD;(3)CF=AE.理由如下:如图3,CF和AB的延长线相交于点D,∴∠CBD=90°,∵CF⊥x,∴∠BCD+∠D=90°,而∠DAF+∠D=90°,∴∠BCD=∠DAF,在△ABE和△CBD中,,∴△ABE≌△CBD(ASA),∴AE=CD,∵x轴平分∠BAC,CF⊥x轴,∴CF=DF,∴CF=CD=AE.13.(青竹湖)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,求证m+n为定值,并求出其值.【解答】解:(1)过C作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中,,∴△MAC≌△OBA(AAS)∴CM=OA=2,MA=OB=4,∴点C的坐标为(﹣6,﹣2);(2)过D作DQ⊥OP于Q点,如图2,则OP﹣DE=PQ,∠APO+∠QPD=90°∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,则△AOP≌△PDQ(AAS),∴OP﹣DE=PQ=OA=2;(3)结论②是正确的,m+n=﹣4,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,则△FSH≌△FTG(AAS),则GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣2,﹣2),∴OT═OS=2,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣2,HS=OH+OS=n+2,则﹣2﹣m=n+2,则m+n=﹣4.
14.(青竹湖)如图1,在平面直角坐标系中,点,连接OA,将OA绕点O逆时针方向旋转90°到OB.(1)求点B的坐标;(用字母a,b表示)(2)如图2,延长AB交x轴于点C,过点B做交y轴于点D,求证:;(3)如图3,在(2)的条件下,过点O做,若,求OM的长.【解答】(1)解:如图1,作AC⊥x轴于C,作BD⊥x轴于D,∴∠ACO=∠BDO=90°,∴∠AOC+∠A=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴OD=AC=|b|,BD=OC=|a|,∴B(﹣b,a);(2)证明:如图2,设OC,BD交于点E,∵BD⊥AC,∴∠BCD=∠COD=90°,∵∠BEC=∠DEO,∴∠ACO=∠BDO,∵∠AOB=∠COD=90°,∴∠AOB+∠BOC=∠COD+∠BOC,即:∠AOC=∠BOD,∵OA=OB,∴△AOC≌△BOD(ASA),∴OC=OD;(3)如图3,延长OM至N,使MN=OM,MO的延长线交AB于Q,连接DN,∵OM∥BD,BD⊥AB,∴OQ⊥AB,∠AOQ=∠=,∠DON=∠BDO=∠BCO,∵OA=OB,∴AQ=BQ,∴AM=DM,∵∠AMO=∠DMN,∴△AMO≌△DMN(SAS),∴∠N=∠AOM=180°﹣∠AOQ=135°,∵∠ABO=45°,∴∠OCB=135°,∴∠N=∠OCB,∵OD=OC,∴△DON≌△OCB(AAS),∴ON=BC=4,∴OM=.15.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.如果∠OAC=38°,求∠DCF的度数;用含n的式子表示点D的坐标;在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.【解答】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.16.如图,四边形OABC的位置在平面直角坐标系中如图所示,且A(0,a),B(b,a),C(b,0),又a,b满足﹣+b2+4b+8=0,点P在x轴上且横坐标大于b,射线OD是第一象限的一条射线,点Q在射线OD上,BP=PQ.并连接BQ交y轴于点M.(1)求点A,B,C的坐标为A、B、C.(2)当BP⊥PQ时,求∠AOQ的度数.(3)在(2)的条件下,若点P在x轴的正半轴上,且OP=3AM,试求点M的坐标.【解答】解:(1)∵﹣+b2+4b+8=0,∴﹣+(b﹣4)2=0,∴a=4,b=4,∴A(0,4),B(﹣4,4),C(﹣4,0),故答案为(0,4),(﹣4,4),(﹣4,0);(2)由(1)知,A(0,4),B(﹣4,4),C(﹣4,0),∴AB=BC=OC=OA=4,∴四边形OABC是菱形,∵∠AOC=90°,∴菱形OABC是正方形,过点Q作QN⊥x轴于N,∴∠PNQ=90°,∴∠QPN+∠PQN=90°,∵BP⊥BQ,∴∠BPQ=90°,∴∠BPC+∠QPN=90°,∴∠PQN=∠BPC,由(1)知,B(﹣4,4),C(﹣4,0),∴BC=4,BC⊥x,∴∠BCP=∠PNQ=90°,在△BCP和△PNQ中,,∴△BCP≌△PNQ(AAS),∴CP=QN,BC=PN,∴OC=PN=4,①当点P在x轴负半轴时,如图1、OC=CP+OP,PN=OP+ON,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,②当点P在x轴正半轴时,如图2、OC=CP﹣OP,PN=ON﹣OP,∴CP=ON,∵CP=QN,∴ON=QN,∵∠PNQ=90°,∴∠QON=45°,∴∠AOQ=45°,即:∠AOQ=45°;(3)如图2,过点Q作QN⊥x轴于N,设P(m,0)(m>0),∵OP=3AM,∴AM=OP=m,∴M(0,m+4),∵点B(﹣4,4),∴直线BM的解析式为y=mx+m+4,由(2)知,PN=OC=4,∴N(m+4,0),∴Q(m+4,m+4),∵点Q在直线BM上,∴m(m+4)+m+4=m+4,∴m=0(舍)或m=4,∴M(0,).
17.(雅礼)已知:△ABC是等腰直角三角形,∠BAC=90°,AB=AC.(1)若B(0,a),C(b,0)且a、b满足+|b﹣9|=0.则a=,b=;(2)如图1,在(1)的条件下,过点A作直线l∥x轴交y轴于点E,过点C作CD⊥l于点D.①求证:△ABE≌△CAD;②直接写出A点坐标;(3)如图2,过点A和点C分别作x轴和y轴的平行线相交于点D,若BC=BD,试问的比值是否不变,若不变,求出比值;若变化,请说明理由.【解答】(1)解:∵+|b﹣9|=0,又∵≥0,|b﹣9|≥0,∴,∴,故答案为:3,9.(2)①证明:如图1,∵直线l∥x轴交y轴于点E,过点C作CD⊥l于点D,∴∠AEB=∠ADC=90°,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠ABE+∠BAE=90°,∠BAE+∠CAD=90°,∴∠ABE=∠CAD,在△AEB和△CDA中,,∴△AEB≌△CDA(AAS).②解:∵△AEB≌△CDA,∴BE=AD,AE=CD,设BE=AD=m,∵B(0,3),C(9,0),∴OB=3,OC=9,∴BC===3,∵△ABC是等腰直角三角形,∴AB=AC=BC=3,∵AE=CD=3+x,在Rt△AEB中,则有x2+(3+x)2=(3)2,解得x=3或﹣6(舍弃),∴BE=3,AE=6,∴A(6,6).(3)如图3中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年宁波房产转让合同范本
- 2024个人承包合同书范本
- 2024年《高端设备采购与技术转让合同》
- 2024年市场营销与推广合作合同
- 2024年高中语文第三单元9劝学同步练习新人教版必修3
- 2024年城市轨道交通建设与维护管理合同
- 2024年定制麻石栏杆安装协议
- 2024年工程质量验收合同
- 2024年专用:虚拟现实技术在军事训练中的应用服务合同
- 2024年城市建筑设计委托合同
- 现代物流技术的应用与创新
- 海南省海口市重点中学2023-2024学年七年级上学期期中数学试卷(含答案)
- 眼角膜炎的治疗药物
- 中国银行交易流水明细清单
- 如何提高数学课堂的教学效率
- 教育舆情报告2023
- 重大事故隐患专项排查检查表
- 学美术的职业生涯规划与管理
- jgj39-2016《托儿所、幼儿园建筑设计规范》(2019年版)
- 软件定义存储在数据中心的应用
- 广东省揭阳市榕城区2023-2024学年八年级上学期期中考试地理试题
评论
0/150
提交评论