版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题4.1圆中垂径定理综合应用(3大类题型)【题型1直接运用勾股定理求线段】【题型2勾股定理与方程综合求线段】【题型3垂径定理在实际中应用】【题型1直接运用勾股定理求线段】1.(2023春•开福区校级月考)如图,⊙O的半径为5,弦AB=8,OC⊥AB于点C,则OC的长为()A.1 B.2 C.3 D.4【答案】C【解答】解:∵OC⊥AB,AB=8,∴,在Rt△ABC中,OA=5,AC=4,由勾股定理可得:.故选:C.2.(2023•安徽模拟)如图,⊙O的弦AB垂直于CD,点E为垂足,连接OE.若AE=1,AB=CD=6,则OE的值是()A. B. C. D.【答案】A【解答】解:过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,如图,则DF=CF=CD=3,AH=BH=AB=3,∵AE=1,∴EH=AH﹣AE=2,在Rt△OBH和Rt△OCF中,,∴Rt△OBH≌Rt△OCF(HL),∴OH=OF,∵CD⊥AB,∴∠HEF=90°,∵∠OHE=∠OFE=90°,∴四边形OHEF为正方形,∴OE=EH=2.故选:A.3.(2022秋•泉港区期末)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长为()A.2 B.3 C.4 D.8【答案】D【解答】解:连接OA,∵OC为弦心距,∴OC⊥AB,AB=2AC,在Rt△ACO中,由勾股定理,得,∴AB=2AC=8.故选:D.4.(2021秋•澄城县期末)如图,⊙O中,OD⊥弦AB于点C,交⊙O于点D,OB=13,AB=24,则OC的长为()A.4 B.5 C.6 D.7【答案】B【解答】解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:B.5.(2021秋•新昌县校级期中)如图,⊙O的半径为4,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A. B. C. D.【答案】A【解答】解:由题意可知,OA=OC=OA=AB=AC=4,∴四边形ABCD是菱形,△AOB是正三角形,∴OA⊥BC,∠OBC=30°,∴BC=2××4=4,故选:A.6.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2 B.4 C.4 D.8【答案】C【解答】解:如图,连接OC,∵AB=12,∴OC=OB=6,∵PB=2,∴OP=4,在Rt△OPC中,CP=,∵CD⊥AB,∴CP=DP,∴CD=2PC=.故选:C.7.(2022秋•兴义市期中)如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为()A.(﹣5,﹣6) B.(﹣4,﹣5) C.(﹣6,﹣4) D.(﹣4,﹣6)【答案】D【解答】解:过A作AB⊥NM于B,连接AM,∵AB过A,∴MB=NB,∵半径为5的⊙A与y轴相交于M(0,﹣3)、N(0,﹣9),∴MN=9﹣3=6,AM=5,∴BM=BN=3,OB=3+3=6,由勾股定理得:AB==4,∴点A的坐标为(﹣4,﹣6),故选:D.【题型2勾股定理与方程综合求线段】8.(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD=8,则⊙O的半径为()A.3 B.4.2 C.5.8 D.6【答案】C【解答】解:连接OC,设⊙O的半径为R,则OE=10﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(10﹣R)2,解得:R=5.8,即⊙O的半径长是5.8,故选:C.9.(2021秋•瑶海区期末)如图,在⊙O中,OE⊥弦AB于点E,EO的延长线交弦AB所对的优弧于点F,若AB=FE=8,则⊙O的半径为()A.5 B.6 C.4 D.2【答案】A【解答】解:连接OA,如图所示:设⊙O半径为r,则由题意可知:OA=OF=r,OE=EF﹣OE=8﹣r,又∵OE⊥弦AB于点E,∴AE===4,在Rt△AOE中,AO2=OE2+AE2,即,r2=(8﹣r)2+42,解得:r=5,∴⊙O的半径长为5.故选:A.10.(2022秋•宜春期末)已知:如图,⊙O的直径AC与弦BD(不是直径)交于点E,若EC=1,DE=EB=2,求AB的长.【答案】AB的长.【解答】解:连接OB,OD,则:,∵DE=EB=2,即E为BD中点,∴AC垂直平分BD,又∵EC=1,∴OE=OC﹣CE=OB﹣1,由勾股定理得:OE2+EB2=OB2,即:(OB﹣1)2+22=OB2,解得:,则AE=AC﹣EC=2OA﹣1=4,∴.即:AB的长.11.(2022秋•西城区期末)如图,AB是⊙O的一条弦,点C是AB的中点,连接OC并延长交劣弧AB于点D,连接OB,DB.若AB=4,CD=1,求△BOD的面积.【答案】.【解答】解:设⊙O的半径是r,∵点C是AB的中点,OC过圆心O,∴OC⊥AB,∵AB=4,CD=1,∴BC=AB=2,OC=OD﹣CD=r﹣1,∵OB2=OC2+BC2,∴r2=(r﹣1)2+22,∴r=,∴OD=,∴△BOD的面积=OD•BC=××2=.【题型3垂径定理在实际中应用】12.(2022秋•信都区校级期末)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得的弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米 B.米 C.3米 D.米【答案】D【解答】解:根据题意和圆的性质知点C为的中点,连接OC交AB于D,则OC⊥AB,,在Rt△OAD中,OA=3,AD=2,∴,∴,即点C到弦AB所在直线的距离是米,故选:D.13.(2022秋•龙亭区校级期末)一条排水管的截面如图所示,已知排水管的半径OB=5,水面宽AB=8,则截面圆心O到水面的距离OC是()A.3 B.4 C. D.6【答案】A【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×8=4,在Rt△OCB中,由勾股定理得:OC==3.故选:A.14.(2023•武义县一模)如图,一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,EM=9,则⊙O的半径为()A.4 B.5 C.6 D.7【答案】B【解答】解:∵M是⊙O弦CD的中点,∴EM⊥CD,∵CD=6,∴CM=CD=3,设OC是x米,则OM=9﹣x,在Rt△COM中,有OC2=CM2+OM2,即:x2=32+(9﹣x)2,解得:x=5,∴OC=5.故选:B.15.(2023•浦东新区模拟)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=8cm,则球的半径长是()A.4cm B.5cm C.6cm D.8cm【答案】B【解答】解:设圆心为O,过点O作ON⊥AD于点N,交CB于点M,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=8,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(8﹣x)cm,NF=EN=4cm,在Rt△ONF中,ON2+NF2=OF2即:(8﹣x)2+42=x2解得:x=5,故选:B.16.(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB,点O是弧AB的圆心,C为弧AB上一点,OC⊥AB,垂足为D.已知AB=60m,CD=10m,求这段弯路的半径.【答案】这段弯路的半径为50m.【解答】解:连接OB,∵OC⊥AB,∴,设半径为r,则OD=r﹣10,在Rt△OBD中,OD2+BD2=OB2,即(r﹣10)2+302=r2,解得r=50m,答:这段弯路的半径为50m.17.(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?【答案】(1)下水管半径为0.5米;(2)水位又被抬升0.7米,水面的宽度增加了0.2米.【解答】解:(1)作半径OD⊥AB于C,连接OB,则CD=0.1米,由垂径定理得:BC=AB=0.3米,在Rt△OBC中,OB2=OC2+BC2,∴OB2=(OB﹣0.1)2+0.09,∴BO=0.5,即下水管半径为0.5米;(2)如图,过点O作OH⊥MN于H,∴NH=MH,∵水位又被抬升0.7米,∴OH=0.1+0.7﹣0.5=0.3米,∴NH===0.4米,∴MN=0.8米,∴增加了0.2米,∴水位又被抬升0.7米,水面的宽度增加了0.2米.18.(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【答案】0.4米.【解答】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=(米),OF=2米,在Rt△OHF中,HF===1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.19.如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问是否需要采取紧急措施?【答案】不需要.【解答】解:∵AB=60米,MP=18米,OP⊥AB,∴AM=AB=30(米),OM=OP﹣MP=(x﹣18)米,在Rt△OAM中,由勾股定理得OA2=AM2+OM2,∴x2=302+(x﹣18)2,∴x=34(米).当PN=4时,∵PN=4,OP=x,∴ON=34﹣4=30(米),设A′N=y米,在Rt△OA′N中,∵OA′=34,A′N=y,ON=30,∴342=y2+302,∴y=16或y=﹣16(舍去),∴A′N=16,∴A′B′=16×2=32(米)>30米,∴不需要采取紧急措施.20.如图,残缺轮片上弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=24cm,CD=8cm.(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.【答案】(1)圆的圆心如图所示;(2)13.【解答】解:(1)连接AC,作线段AC的垂直平分线交直线CD为O,则点O为此残缺轮片所在圆的圆心;(2)连接OA,设此圆的半径为rcm,则OD=(r﹣8)cm,∵CD是弦AB的垂直平分线,AB=24cm,∴AD=12cm,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣8)2+122,解得:r=13.21.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?【答案】此货船能顺利通过这座拱桥.【解答】解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥.22.我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O表示圆材截面,CE是⊙O的直径,AB表示“锯道”,CD表示“锯深”,1尺=10寸,求圆材的直径长就是求CE的长.)【答案】见试题解答内容【解答】解:连接OA,如图所示:∵AB⊥CE,∴AD=BD,∵AB=10,∴AD=5,在Rt△AOE中,∵OA2=OD2+AD2,∴OA2=(OA﹣1)2+52,解得:OA=13,∴CD=2A0=26;即直径为26寸.23.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.【答案】见试题解答内容【解答】解:如图,过点O作OF⊥DE于点F,则EF=DF=DE,假设DE=6m,则DF=3m,∵圆的半径为5m,∴OD=5m,∴OF===4>3.8,∴这条船能过桥洞.24.(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿井环保聚氨酯保温施工协议
- 租赁合同范本:建筑设施
- 医疗资产捐赠分配指南
- 农民工防暑降温措施
- 航空航天项目招投标方案范本
- 粮食加工厂火灾风险控制
- 广告公司车位租赁协议范本
- 皮革厂防火门招标资料
- 影视基地转让合同范例
- 空气净化器生产经理招聘书
- 六年级上数学试题-圆的周长-练习题-人教版 无答案
- 事业单位招聘人员体检表
- 2020年重症医学科病人呼吸心跳骤停演练方案及脚本
- 物联网信息安全知识考核试题与答案
- 量子力学选择题库(含答案)
- 军乐队乐器种类以及人员编制
- 常见皮肤病讲稿
- 高中化学选修4《化学反应原理》全册教案
- 创建学习型医院实施方案
- 大学《通用英语1》 期中测试卷试题
- 新人教选择性必修一 Unit 4:Discover Useful Structures
评论
0/150
提交评论