![云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view11/M02/12/09/wKhkGWWp9zeABiNIAAGE-U3OL6o834.jpg)
![云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view11/M02/12/09/wKhkGWWp9zeABiNIAAGE-U3OL6o8342.jpg)
![云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view11/M02/12/09/wKhkGWWp9zeABiNIAAGE-U3OL6o8343.jpg)
![云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view11/M02/12/09/wKhkGWWp9zeABiNIAAGE-U3OL6o8344.jpg)
![云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view11/M02/12/09/wKhkGWWp9zeABiNIAAGE-U3OL6o8345.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市沾益县第四中学2024届高一上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.最小值是A.-1 B.C. D.12.设集合,.则()A. B.C. D.3.已知函数,则该函数的零点位于区间()A. B.C. D.4.已知函数,,则的值域为()A. B.C. D.5.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|6.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.7.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.8.已知函数是定义在上的奇函数,当时,,则当时,表达式是A. B.C. D.9.已知函数,若正数,,满足,则()A.B.C.D.10.已知函数,若,则x的值是()A.3 B.9C.或1 D.或3二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知圆,则过点且与圆C相切的直线方程为_____12.函数(且)的定义域为__________13.某时钟的秒针端点到中心点的距离为6cm,秒针均匀地绕点旋转,当时间时,点与钟面上标12的点重合,将,两点的距离表示成的函数,则_______,其中14.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________15.函数f(x)是定义在R上的偶函数,f(x-1)是奇函数,且当时,,则________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.17.已知定义在上的奇函数(1)求的值;(2)用单调性的定义证明在上是增函数;(3)若,求的取值范围.18.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.19.化简求值:(1)(2).20.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围21.已知集合,,,全集为实数集()求和()若,求实数的范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】∵,∴当sin2x=-1即x=时,函数有最小值是,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题2、A【解析】先求得,然后求得.【详解】.故选:A3、B【解析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【详解】由题,,,,所以,故选:B【点睛】本题考查利用零点存在性定理判断零点所在区间,属于基础题4、A【解析】根据两角和的正弦公式、二倍角公式和辅助角公式化简可得,结合和正弦函数的单调性即可求出函数的最大值和最小值.【详解】由题意知,,由,得,又函数在上单调递增,在上单调递减,令,所以函数在上单调递增,在上单调递减,有,所以,故的值域为.故选:A5、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B6、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.7、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D8、D【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出.【详解】设,则,当时,,,函数是定义在上的奇函数,,,故选D.【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为9、B【解析】首先判断函数在上单调递增;然后根据,同时结合函数的单调性及放缩法即可证明选项B;通过举例说明可判断选项A,C,D.【详解】因为,所以函数在上单调递增;因为,,,均为正数,所以,又,所以,所以,所以,又因为,所以,选项B正确;当时,满足,但不满足,故选项A错误;当时,满足,但此时,不满足,故选项C错误;当时,满足,但此时,不满足,故选项D错误.故选:B.10、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.12、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:13、【解析】设函数解析式为,由题意将、代入求出参数值,即可得解析式.【详解】设,由题意知:,当时,,则,,令得;当时,,则,,令得,所以.故答案为:.14、①.②.【解析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.15、1【解析】由函数f(x)是定义在R上的偶函数及f(x-1)是奇函数得到函数的周期,进而根据函数的性质求得答案.【详解】根据题意,函数f(x)是定义在R上的偶函数,则有f(-x)=f(x),又f(x-1)是奇函数,则f(-x-1)=-f(x-1),所以f(x+2)=f[-(x+2)]=f[-(x+1)-1]=-f[(x+1)-1]=-f(x),即f(x+2)=-f(x),则有f(x+4)=-f(x+2)=f(x),所以函数f(x)是周期为4的周期函数,则,,故故答案为:1.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.17、(1)(2)证明见解析(3)【解析】(1)由是定义在上的奇函数知,由此即可求出结果;(2)根据函数单调递增的定义证明即可;(3)根据函数的奇偶性和单调性,可得,解不等式,即可得到结果.【小问1详解】解:由是定义在上的奇函数知,,经检验知当时,是奇函数,符合题意.故.【小问2详解】解:设,且,则,故在上是增函数.【小问3详解】解:由(2)知奇函数在上是增函数,故或,所以满足的实数的取值范围是.18、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判定定理,即利用线面垂直,证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.或定义法利用线面垂直的判断定理证明线面垂直,条件齐全,证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等;(2)利用棱锥的体积公式求体积,在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算19、(1)(2)【解析】(1)根据对数运算公式计算即可;(2)根据指数运算公式和根式的性质运算化简.【小问1详解】原式【小问2详解】原式.20、(1),;(2);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国磷酸钾三水市场调查研究报告
- 2025-2030年成长能量棒行业跨境出海战略研究报告
- 2025-2030年可调节台灯行业跨境出海战略研究报告
- 2025-2030年数控木材四面铣行业跨境出海战略研究报告
- 2025-2030年手持式光谱仪行业跨境出海战略研究报告
- 2025-2030年手工印章雕刻行业深度调研及发展战略咨询报告
- 2025-2030年地黄滋阴凉血酒行业跨境出海战略研究报告
- 2025-2030年可穿戴人工角膜保护镜行业跨境出海战略研究报告
- 合成材料制造的市场预测考核试卷
- 工业控制计算机架构考核试卷
- 【历史】秦汉时期:统一多民族国家的建立和巩固复习课件-2024-2025学年统编版七年级历史上册
- 社区中心及卫生院65岁及以上老年人健康体检分析报告模板
- 化工过程安全管理导则AQT 3034-2022知识培训
- 第02讲 导数与函数的单调性(教师版)-2025版高中数学一轮复习考点帮
- 2024届新高考语文高中古诗文必背72篇 【原文+注音+翻译】
- 2024电力建设工程质量问题通病防止手册
- 中华人民共和国学前教育法
- 2024年贵州公务员考试申论试题(B卷)
- 三年级(下册)西师版数学全册重点知识点
- 期末练习卷(试题)-2024-2025学年四年级上册数学沪教版
- 2025年公务员考试申论试题与参考答案
评论
0/150
提交评论