云南省师宗县2023年数学八上期末复习检测试题含解析_第1页
云南省师宗县2023年数学八上期末复习检测试题含解析_第2页
云南省师宗县2023年数学八上期末复习检测试题含解析_第3页
云南省师宗县2023年数学八上期末复习检测试题含解析_第4页
云南省师宗县2023年数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省师宗县2023年数学八上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若m<0,则点(-m,m-1)在平面直角坐标系中的位置在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.如图,小明将几块六边形纸片分别剪掉了一部分(虚线部分),得到了一个新多边形,若新多边形的内角和是其外角和的倍,则对应的图形是()A. B. C. D.3.如果一个三角形的两边长分别为2、x、13,x是整数,则这样的三角形有()A.2个 B.3个 C.5个 D.13个4.下列函数关系中,随的增大而减小的是()A.长方形的长一定时,其面积与宽的函数关系B.高速公路上匀速行驶的汽车,其行驶的路程与行驶时间的函数关系C.如图1,在平面直角坐标系中,点、,的面积与点的横坐标的函数关系D.如图2,我市某一天的气温(度)与时间(时)的函数关系5.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个6.已知可以写成一个完全平方式,则可为()A.4 B.8 C.16 D.7.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0) B.y值随着x值增大而减小C.它的图象经过第二象限 D.当x>1时,y>08.下列计算正确的是()A.= B.=1C.(2﹣)(2+)=1 D.9.在平面直角坐标系中,点到原点的距离是()A.1 B. C.2 D.10.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55° B.50° C.45° D.60°二、填空题(每小题3分,共24分)11.据印刷工业杂志社报道,纳米绿色印刷技术突破了传统印刷技术精度和材料种类的局限,可以在硅片上印刷出10纳米(即为0.00000001米)量级的超高精度导电线路,将0.00000001用科学记数法表示应为___________.12.已知,则的值为_______.13.比较大小:_____3(填:“>”或“<”或“=”)14.用科学记数法表示:0.00000036=15.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为_____cm.16.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________________________________________________.17.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是________(添加一个即可)18.已知,则_________.三、解答题(共66分)19.(10分)直线与直线垂直相交于,点在射线上运动,点在射线上运动,连接.(1)如图1,已知,分别是和角的平分线,①点,在运动的过程中,的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出的大小.②如图2,将沿直线折叠,若点落在直线上,记作点,则_______;如图3,将沿直线折叠,若点落在直线上,记作点,则________.(2)如图4,延长至,已知,的角平分线与的角平分线交其延长线交于,,在中,如果有一个角是另一个角的倍,求的度数.20.(6分)某校团委举办了一次“中国梦我的梦”演讲比赛满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀.如图所示是这次竞赛中甲、乙两组学生成绩分布的条形统计图.(1)补充完成下列的成绩统计分析表:组别平均分中位数方差合格率优秀率甲63.4190%20%乙7.11.6980%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是______组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.21.(6分)如图所示,在图形中标出点A、B、C关于直线l的对称点D、E、F.若M为AB的中点,在图中标出它的对称点N.若AB=10,AB边上的高为4,则△DEF的面积为多少?22.(8分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.23.(8分)实数在数轴上的位置如图所示,且,化简24.(8分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于E.(1)当∠BDA=115°时,∠BAD=_____°,∠DEC=_____°;当点D从B向C运动时,∠BDA逐渐变______(填”大”或”小”);(2)当DC=AB=2时,△ABD与△DCE是否全等?请说明理由:(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.25.(10分)小聪和小明沿同一条路同时从学校出发到学校图书馆查阅资料,学校与图书馆的路程是千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线和线段分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在图书馆查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程(千米)与所经过的时间(分钟)之间的函数关系;(3)求线段的函数关系式;(4)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?26.(10分)阅读理解在平面直角坐标系中,两条直线,①当时,,且;②当时,.类比应用(1)已知直线,若直线与直线平行,且经过点,试求直线的表达式;拓展提升(2)如图,在平面直角坐标系中,的顶点坐标分别为:,试求出边上的高所在直线的表达式.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先确定横纵坐标的正负,再根据各象限内点的坐标特征可以判断.【详解】解:∵m<0,∴-m>0,m-1<0,∴点(-m,m-1)在第四象限,故选:D.【点睛】本题考查了平面直角坐标系各象限点的坐标特征,熟记平面直角坐标系中各象限点的坐标的符号是解题的关键.2、A【分析】根据新多边形的内角和为,n边形的内角和公式为,由此列方程求解即可.【详解】设这个新多边形的边数是,

则,

解得:,

故选:A.【点睛】本题考查了多边形外角和与内角和.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.3、B【分析】先根据三角形的三边关系求出x的取值范围,再求出符合条件的x的值即可.【详解】由题意可得,,解得,11<<15,∵是整数,

∴为12、13、14;则这样的三角形有3个,

故选:B.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系定理是解答的关键.4、C【分析】首先要明确各选项的函数关系,再根据函数的性质进行判断即可.【详解】A.长方形的长一定时,其面积与宽成正比例关系,此时随的增大而增大,故选项A不符合题意;B.高速公路上匀速行驶的汽车,其行驶的路程与行驶时间成正比例关系,此时随的增大而增大,故选项B不符合题意;C.如图1,在平面直角坐标系中,点、,的面积与点的横坐标成反比关系,此时随的增大而减小,故选项C符合题意;D.如图2,我市某一天的气温(度)与时间(时)的函数关系中无法判断,y与x的关系,故选项D不符合题.故选:C.【点睛】此题主要考查了函数值与自变量之间的关系,熟练掌握各选项的函数关系是解题的关键.5、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、C【解析】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.7、D【解析】画函数的图象,选项A,点(1,0)代入函数,,错误.由图可知,B,C错误,D,正确.选D.8、D【分析】根据二次根式的加减法对A、B进行判断.根据平方差公式对B进行判断;利用分母有理化对D进行判断.【详解】解:、原式,所以选项错误;、原式,所以选项错误;、原式,所以选项错误;、原式,所以选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9、D【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点到原点的距离是故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.10、A【分析】根据折叠的性质可知∠ABC=∠A’BC,∠DBE=∠DBE’,然后根据平角等于180°代入计算即可得出答案.【详解】解:由折叠的性质可知∠ABC=∠A’BC=35°,∠DBE=∠DBE’,∴∠EBE’=180°-∠ABC-∠A’BC=180°-35°-35°=110°,∴∠DBE=∠DBE’=∠EBE’=×110°=55°.故选A.【点睛】本题考查了折叠的性质和角的计算,熟知折叠后重合的角相等是解决此题的关键.二、填空题(每小题3分,共24分)11、【分析】科学计数法的形式是:,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往右移动到1的后面,所以=-1.【详解】0.00000001=故答案为.【点睛】本题考查的知识点是用科学计数法表示绝对值较大的数,关键是在理解科学计数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.12、24【解析】试题解析:故答案为13、<【分析】依据被开放数越大对应的算术平方根越大可估算出的大小,故此可求得问题的答案.【详解】∵6<9,∴<1.故答案为<.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.14、3.6×10﹣1.【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000036=3.6×10﹣1,考点:科学记数法—表示较小的数15、1【分析】吸管露出杯口外的长度最少,即在杯内最长,可构造直角三角形用勾股定理解答.【详解】解:设在杯里部分长为xcm,则有:x1=31+41,解得:x=5,所以露在外面最短的长度为7cm﹣5cm=1cm,故吸管露出杯口外的最短长度是1cm,故答案为:1.【点睛】本题考查了勾股定理的实际应用,熟练掌握勾股定理,并在实际问题中构造直角三角形是解答的关键.16、如果两条直线平行于同一条直线,那么这两条直线平行.【分析】命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.17、∠D=∠B【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC,DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).18、1【分析】令,,根据完全平方公式的变形公式,即可求解.【详解】令,,则x-y=1,∵,∴,即:,∵,∴,即:xy=1,故答案是:1.【点睛】本题主要考查通过完全平方公式进行计算,掌握完全平方公式及其变形,是解题的关键.三、解答题(共66分)19、(1)∠ACB的大小不会发生变化,∠ACB=45°;(2)30,60;(3)60°或72°.【分析】(1)①由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;②图2中,由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,根据三角形的内角和即可得到结论;图3中,根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(2)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可解答.【详解】(1)①∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;②∵图2中,将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵图3中,将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30,60;(2)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的倍,故有:①∠EAF=∠E,∠E=60°,∠ABO=120°(不合题意,舍去);②∠EAF=∠F,∠E=30°,∠ABO=60°;③∠F=∠E,∠E=36°,∠ABO=72°;④∠E=∠F,∠E=54°,∠ABO=108°(不合题意,舍去);.∴∠ABO为60°或72°.【点睛】本题主要考查的就是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.同学们在解答这种问题的时候,一定要注意外角与内角之间的联系,不能只关注某一部分.在需要分类讨论的时候一定要注意分类讨论的思想.20、(1)甲组平均分6.7,乙组中位数7.5;(2)甲;(3)乙组的平均分高于甲组;乙组的中位数高于甲组,所以乙组的成绩要好于甲组.(答案不唯一)【分析】(1)先根据条形统计图写出甲乙两组的成绩,然后分别计算甲的平均数,乙的中位数;

(2)比较两组的中位数进行判断;

(3)通过乙组的平均数、中位数进行说明.【详解】解:(1)甲组:3,6,6,6,6,6,7,8,9,10,甲组平均数;

乙组:5,5,6,7,7,8,8,8,8,9,乙组中位数;(2)因为甲组的中位数为6,乙组的中位数是7.5,所以7分在甲组排名属中游略偏上,故小明是甲组的学生;(3)两条支持乙组同学观点的理由:①乙组的平均数高于甲组;②乙组的中位数高于甲组,所以乙组的成绩要好于甲组.【点睛】本题考查了条形统计图:从条形图可以很容易看出数据的大小,便于比较.也考查了中位数和平均数.21、△DEF的面积是1【解析】试题分析:根据轴对称的性质,可知两个三角形全等,所以对应边相等,再由题中给出条件易得所求三角形的面积.试题解析:如图所示,∵AB=10,∴DE=AB=10,∴.答:△DEF的面积是1.22、(1)见解析;(2)△BEF为等腰三角形,证明见解析.【分析】(1)先由AD∥BE得出∠A=∠B,再利用SAS证明△ADC≌△BCE即得结论;(2)由(1)可得CD=CE,∠ACD=∠BEC,再利用等腰三角形的性质和三角形的外角性质可得∠BFE=∠BEF,进一步即得结论.【详解】(1)证明:∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中∴△ADC≌△BCE(SAS),∴CD=CE;(2)解:△BEF为等腰三角形,证明如下:由(1)知△ADC≌△BCE,∴CD=CE,∠ACD=∠BEC,∴∠CDE=∠CED,∴∠CDE+∠ACD=∠CED+∠BEC,即∠BFE=∠BEF,∴BE=BF,∴△BEF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质、平行线的性质、三角形的外角性质以及等腰三角形的判定和性质等知识,属于基础题型,难度不大,熟练掌握全等三角形和等腰三角形的判定和性质是解题的关键.23、【分析】直接利用二次根式的性质以及结合数轴得出a、b的取值范围进而化简即可.【详解】解:由数轴及可得:

a<0<b,a+b<0,∴==-a+(a+b)=b故答案为b.【点睛】本题考查二次根式的性质与化简,正确得出a的取值范围是解题的关键.24、(1)25,115,小;(2)当DC=2时,△ABD≌△DCE;理由见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)首先利用三角形内角和为180°可算出∠BAD=180°﹣40°﹣115°=25°;再利用邻补角的性质和三角形内角和定理可得∠DEC的度数;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)分类讨论:由(2)可知∠ADB=∠DEC,所以∠AED与∠ADE不可能相等,于是可考虑∠DAE=∠AED和∠DAE=∠ADE两种情况.【详解】解:(1)∵∠B=40°,∠ADB=115°,AB=AC,∴∠BAD=180°﹣40°﹣115°=25°,∠C=∠B=40°;∵∠ADE=40°,∠ADB=115°,∴∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∴∠DEC=180°﹣40°﹣25°=115°,当点D从B向C运动时,∠BDA逐渐变小,故答案为:25,115,小;(2)当DC=2时,△ABD≌△DCE,理由如下:理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由如下:∵当∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴∠AED=180°-70°-40°=70°,∴∠AED=∠DAC,∴AD=DE,∴△ADE是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴AE=DE,∴△ADE是等腰三角形.综上所述,当∠BDA的度数为110°或80°时,△ADE是等腰三角形.【点睛】本题考查了等腰三角形的性质和判定及全等三角形的判定,熟练掌握性质和判定进行正确推理是解题关键.等腰三角形的问题常常要分类讨论,容易漏解.25、(1)15;;(2)s与t的函数关系式s=t(0≤t≤45).(1)线段的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论