版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温岭市实验学校2023-2024学年八上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各数,,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个2.下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.一组数据的众数可以不唯一C.一组数据的标准差就是这组数据的方差的平方根D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c23.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是,则图中四个小正方形的面积之和是()A. B. C. D.不能确定4.如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=()A.150° B.140° C.130° D.120°5.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将,换算成十进制数应为:;.按此方式,将二进制换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9, B.9, C.17, D.17,6.如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80 B.85 C.90 D.957.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A.40人 B.30人 C.20人 D.10人8.某航空公司规定,旅客乘机所携带行李的质量与其运费(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为()A. B. C. D.9.广州市发布2019年上半年空气质量状况,城区PM2.5平均浓度为0.000029克/立方米,0.000029用科学记数法表示为()A.2.9 B.2.9 C.2.9 D.2.910.某班学生到距学校12km的烈士陵园扫墓,一部分同学骑自行车先行,经h后,其余同学乘汽车出发,由于□□□□□□,设自行车的速度为xkm/h,则可得方程为,根据此情境和所列方程,上题中□□□□□□表示被墨水污损部分的内容,其内容应该是()A.汽车速度是自行车速度的3倍,结果同时到达B.汽车速度是自行车速度的3倍,后部分同学比前部分同学迟到hC.汽车速度是自行车速度的3倍,前部分同学比后部分同学迟到hD.汽车速度比自行车速度每小时多3km,结果同时到达11.如图,,,与交于点,点是的中点,.若,,则的长是()A. B.C.3 D.512.估计的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间二、填空题(每题4分,共24分)13.若不等式(m-2)x>1的解集是x<,则m的取值范围是______.14.如图,已知,,AC=AD.给出下列条件:①AB=AE;②BC=ED;③;④.其中能使的条件为__________(注:把你认为正确的答案序号都填上).15.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.16.如图,在△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC=________.17.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________18.若关于x的分式方程无解,则m的值是_____.三、解答题(共78分)19.(8分)已知,求代数式的值.20.(8分)如图所示,△ABD和△BCD都是等边三角形,E、F分别是边AD、CD上的点,且DE=CF,连接BE、EF、FB.求证:(1)△ABE≌△DBF;(2)△BEF是等边三角形.21.(8分)如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE的长;(2)求点D的坐标.22.(10分)已知港口A与灯塔C之间相距20海里,一艘轮船从港口A出发,沿AB方向以每小时4海里的速度航行,4小时到达D处,测得CD两处相距12海里,若轮船沿原方向按原速度继续航行2小时到达小岛B处,此时船与灯塔之间的距离为多少海里?23.(10分)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.24.(10分)如图,在长方形ABCO中,点O为坐标原点,点B的坐标为(8,6),点A,C在坐标轴上,直线y=2x+b经过点A且交x轴于点F.(1)求b的值和△AFO的面积;(2)将直线y=2x+b向右平移6单位后交AB于点D,交y轴于点E;①求点D,E的坐标;②动点P在BC边上,点Q是坐标平面内第一象限内的点,且在平移后的直线上,若△APQ是等腰直角三角形,求点Q的坐标.25.(12分)解方程与不等式组(1)解方程:(2)解不等式组26.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。
参考答案一、选择题(每题4分,共48分)1、B【分析】整数和分数统称为有理数,无限不循环小数统称为无理数,据此定义逐项分析判断.【详解】解:,,,为有理数;是无理数,是无理数,,为开方开不尽的数,为无理数,为开方开不尽的数,为无理数,故无理数有3个,故选B.【点睛】本题考查算术平方根、立方根、无理数等知识,是基础考点,难度较易,掌握相关知识是解题关键.2、B【分析】正确的命题是真命题,根据定义判断即可.【详解】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、一组数据的众数可以不唯一,故正确;C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;故选:B.【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.3、A【分析】根据正方形的面积公式求出最大的正方形的面积,根据勾股定理计算即可.【详解】∵最大的正方形边长为∴最大的正方形面积为由勾股定理得,四个小正方形的面积之和正方形E、F的面积之和最大的正方形的面积故答案选A.【点睛】本题考查了正方形面积运算和勾股定理,懂得运用勾股定理来表示正方形的面积间的等量关系是解题的关键.4、A【详解】解:∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=30°,∴∠BOC=150°.故选A.5、A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制换算成十进制数如下:;将十进制数13转化为二进制数如下:……1,……0,……1,∴将十进制数13转化为二进制数后得,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.6、C【分析】先根据平角的概念求出的度数,然后利用三角形内角和定理即可得出答案.【详解】故选:C.【点睛】本题主要考查三角形内角和定理及平角的概念,掌握三角形内角和定理是解题的关键.7、C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.8、A【分析】根据图像,利用待定系数法求出y与x的函数关系式,令y=0,求出x的值,即为免费行李的最大质量.【详解】设,由图像可知,直线经过,两个点,将坐标代入得,解得∴当时,,解得∴旅客可携带的免费行李的最大质量为20kg故选A.【点睛】本题考查一次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.9、A【分析】科学记数法表示较小数时的形式为,其中,n为正整数,只要找到a,n即可.【详解】故选:A.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.10、A【分析】根据方程的等量关系为:骑自行车的时间-乘汽车的时间=h,再根据时间=路程÷速度可知被墨水污损部分的内容.【详解】解:由方程可知汽车速度是自行车速度的3倍,结果同时到达.故选:A【点睛】本题考查根据分式方程找已知条件的能力以及路程问题,有一定的难度,解题关键是找准等量关系:骑自行车的时间-乘汽车的时间=h11、C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB⊥AF,
∴∠FAB=90°,
∵点D是BC的中点,
∴AD=BD=BC=4,
∴∠DAB=∠B,
∴∠ADE=∠B+∠BAD=2∠B,
∵∠AEB=2∠B,
∴∠AED=∠ADE,
∴AE=AD,∴AE=AD=4,
∵EF=,EF⊥AF,
∴AF=3,
故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12、A【分析】根据算术平方根的定义由9<15<16可得到31.【详解】解:∵9<15<16,∴31.故选:A.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.二、填空题(每题4分,共24分)13、m<1【解析】根据不等式的性质和解集得出m-1<0,求出即可.【详解】∵不等式(m-1)x>1的解集是x<,
∴m-1<0,
即m<1.
故答案是:m<1.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.14、①③④【分析】由∠CAE=∠DAB,得∠CAB=∠DAE;则△CAB和△DAE中,已知的条件有:∠CAB=∠DAE,CA=AD;要判定两三角形全等,只需添加一组对应角相等或AE=AB即可.【详解】∵∠CAE=∠DAB,∴∠CAE+∠EAB=∠DAB+∠EAB,即∠CAB=∠DAE;①∵AB=AE,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(SAS),故①正确;②∵BC=ED,AC=AD,而∠CAB和∠DAE不是相等两边的夹角,∴不能判定△ABC和△AED是否全等,故②错误;③∵∠C=∠D,AC=AD,∠CAB=∠DAE,∴△ABC≌△AED(ASA),故③正确;④∵∠B=∠E,∠CAB=∠DAE,AC=AD,∴△ABC≌△AED(AAS),故④正确.故答案为:①③④.【点睛】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.15、1【分析】先根据作图过程可得AP为的角平分线,再根据角平分线的性质可得点D到AB的距离,然后根据三角形的面积公式即可得.【详解】由题意得:AP为的角平分线点D到AB的距离为4,即的边AB上的高为4则的面积是故答案为:1.【点睛】本题考查了角平分线的作图过程与性质,熟记角平分线的性质是解题关键.16、1【分析】根据垂直平分线的性质可得AF=BF=6,然后根据已知条件即可求出结论.【详解】解:∵EF是AB的垂直平分线,BF=6,∴AF=BF=6∵CF=2,∴AC=AF+CF=1.故答案为:1.【点睛】本题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.17、1【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【详解】∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=1.故答案为:1.【点睛】本题考查了垂直平分线的性质,轴对称−最短路线问题的应用,解此题的关键是找出P的位置.18、2【详解】解:去分母,得m﹣2=x﹣1,x=m﹣1.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=2,即m的值为2.故答案为2.三、解答题(共78分)19、【分析】先将x进行化简,然后再代入求值即可.【详解】解:,原式====.【点睛】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键.20、(1)详见解析;(2)详见解析.【分析】(1)根据等边三角形的性质及SAS推出△ABE≌△DBF即可;(2)根据全等三角形的性质得出BE=BF,∠ABE=∠DBF,求出∠EBF=60°,根据等边三角形的判定推出即可.【详解】证明:(1)∵△ABD和△BCD都是等边三角形,∴∠ABD=∠A=∠BDF=60°,AB=AD=DB=CD,∵DE=CF,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS);(2)∵△ABE≌△DBF,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°,∴△BEF是等边三角形.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形和等边三角形的判定方法和性质是解题的关键.21、(1)4(2)(0,5)【分析】(1)根据轴对称的性质以及勾股定理即可求出线段C的长;(2)在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【详解】解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,∴BE=,∴CE=BC﹣BE=4;(2)在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴,∴OD=5,∴.【点睛】本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.22、船与灯塔之间的距离为海里.【分析】先要利用勾股定理的逆定理证明出△ADC是Rt△,再推出△BDC是Rt△,最后利用勾股定理算出BC.【详解】在Rt△ACD中,AC=20,CD=12,∴AD=4×4=16,AC2=AD2+CD2,∴△ACD是直角三角形.∴△BDC是直角三角形,在Rt△CDB中,CD=12,DB=8,∴CB=.答:船与灯塔之间的距离为海里.【点睛】此题主要考查了勾股定理的应用,根据已知得出△CDB为直角三角形以及在直角三角形中求出CD的长是解题关键.23、(1)20°;(2)30°;(3)∠EDC=∠BAD,见解析【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【详解】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)由(2)得∠EDC与∠BAD的数量关系是∠EDC=∠BAD.【点睛】此题主要考查等腰三角形的性质证明,解题的关键是熟知等腰三角形的性质及三角形外角定理及内角和定理.24、(1)b=6,S△ADO=×3×6=;(2)①D(6,6),E(0,-6);②点Q的坐标可以为(,),(4,2),(,).【分析】(1)由矩形的性质和点B坐标求得A坐标,代入直线方程中即可求得b值,进而求得点F坐标,然后利用三角形面积公式即可解答;(2)①根据图象平移规则:左加右减,上加下减得到平移后的解析式,进而由已知可求得点D、E的坐标;②根据题意,分三种情况:若点A为直角顶点时,点Q在第一象限;若点P为直角顶点时,点Q在第一象限;若点Q为直角顶点,点Q在第一象限,画出对应的图象分别讨论求解即可.【详解】(1)由题意得A(0,6),代入y=2x+b中,解得:b=6,即y=2x+6,令y=0,由0=2x+6得:x=-3,即F(-3,0)∴OA=6,OF=3,∴S△ADO=×3×6=;
(2)①由题意得平移后的解析式为:y=2(x-6)+6=2x-6当y=6时,2x-6=6,解得:x=6∴D(6,6),E(0,-6)②若点A为直角顶点时,点Q在第一象限,连结AC,如图2,∠APB>∠ACB>45°,∴△APQ不可能为等腰直角三角形,∴点Q不存在;若点P为直角顶点时,点Q在第一象限,如图3,过点Q作QH⊥CB,交CB的延长线于点H,则Rt△ABP≌Rt△PHQ,∴AB=PH=8,HQ=BP,设Q(x,2x−6),则HQ=x−8,∴2x−6=8+6−(x−8),∴x=,∴Q(,)若点Q为直角顶点,点Q在第一象限,如图4,设Q′(x,2x−6),∴AG
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优惠的水晶灯销售合同
- 高效便捷企业管理服务合同
- 农资化肥购销合同样本
- 如何使用信用担保借款合同
- 聘用合同补充协议的制定原则与方法
- 劳动合同主体更改的协议
- 贷款违约责任合同
- 家电清洗维修保养服务合同
- 2025届云南省文山州砚山县第二高级中学物理高二上期末学业水平测试模拟试题含解析
- 2025届黑龙江省齐齐哈尔市八中高一物理第一学期期末联考模拟试题含解析
- 婚姻家庭纠纷中的法律风险与防范
- 现代物流技术的应用与创新
- 海南省海口市重点中学2023-2024学年七年级上学期期中数学试卷(含答案)
- 眼角膜炎的治疗药物
- 中国银行交易流水明细清单
- 如何提高数学课堂的教学效率
- 教育舆情报告2023
- 重大事故隐患专项排查检查表
- 学美术的职业生涯规划与管理
- jgj39-2016《托儿所、幼儿园建筑设计规范》(2019年版)
- 软件定义存储在数据中心的应用
评论
0/150
提交评论