




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郑州市2023-2024学年九年级数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.2.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.20083.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣14.如图,在扇形中,∠,,则阴影部分的面积是()A. B.C. D.5.已知,则的值是()A. B. C. D.6.方程x2-x-1=0的根是(
)A., B.,C., D.没有实数根7.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°8.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.9.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位 B.向右平移4个单位C.向上平移1个单位 D.向下平移1个单位10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m11.二次函数y=(x-1)2-5的最小值是()A.1 B.-1 C.5 D.-512.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,AB为弓形AB的弦,AB=2,弓形所在圆⊙O的半径为2,点P为弧AB上动点,点I为△PAB的内心,当点P从点A向点B运动时,点I移动的路径长为_____.14.已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c>0的解集是_____.15.代数式有意义时,x应满足的条件是______.16.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.17.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.18.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.三、解答题(共78分)19.(8分)已知抛物线y=2x2-12x+13(1)当x为何值时,y有最小值,最小值是多少?(2)当x为何值时,y随x的增大而减小(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式20.(8分)小明准备进行如下操作实验:把一根长为的铁丝剪成两段,并把每一段围成一个正方形.(1)要使这两个正方形的面积之和等于,小明该怎么剪?(2)小刚对小明说:“这两个正方形的面积之和不可能等于.”小刚的说法对吗?请说明理由.21.(8分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?22.(10分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.23.(10分)如图,在中,,的中点.(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上.24.(10分)如图所示,已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少;(2)求出该圆锥的底面半径是多少.25.(12分)用一块边长为的正方形薄钢片制作成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).若做成的盒子的底面积为时,求截去的小正方形的边长.26.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是45°,若坡角∠FAE=30°,求大树的高度(结果保留根号).
参考答案一、选择题(每题4分,共48分)1、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、C【分析】根据反比例函数的定义逐一判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点睛】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.4、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】=故选D【点睛】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.5、A【解析】设a=k,b=2k,则.故选A.6、C【解析】先求出根的判别式b2-4ac=(-1)2-4×1×(-1)=5>0,然后根据一元二次方程的求根公式为,求出这个方程的根是x==.故选C.7、B【详解】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B8、A【解析】分析:在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.详解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故选项A正确;故选:A.点睛:此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.9、B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.故选:B.【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.10、C【解析】根据同时同地物高与影长成正比,列式计算即可得解.【详解】设旗杆高度为x米,由题意得,,解得:x=15,故选C.【点睛】本题考查了相似三角形的应用,熟知同时同地物高与影长成比例是解题的关键.11、D【分析】根据顶点式解析式写出即可.【详解】二次函数y=(x-1)2-1的最小值是-1.故选D.【点睛】本题考查了二次函数的最值问题,比较简单.12、B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会调查”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.二、填空题(每题4分,共24分)13、【解析】连接OB,OA,过O作,得到,求得,连接IA,IB,根据角平分线的定义得到,,根据三角形的内角和得到,设A,B,I三点所在的圆的圆心为,连接,,得到,根据等腰三角形的性质得到,连接,解直角三角形得到,根据弧长公式即可得到结论.【详解】解:连接OB,OA,过O作,,,在Rt中,,,,,连接IA,IB,点I为的内心,,,,,点P为弧AB上动点,始终等于,点I在以AB为弦,并且所对的圆周角为的一段劣弧上运动,设A,B,I三点所在的圆的圆心为,连接,,则,,,连接,,,,点I移动的路径长故答案为:【点睛】本题考查了三角形的内切圆与内心,解直角三角形,弧长公式以及圆周角定理,根据题意作出辅助线,构造出全等三角形,得出点I在以AB为弦,并且所对的圆周角为的一段劣弧上是解答此题的关键.14、﹣1<x<1【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(1,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<1时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<1.故答案为﹣1<x<1.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.15、.【解析】直接利用二次根式的定义和分数有意义求出x的取值范围.【详解】解:代数式有意义,可得:,所以,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.16、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).
故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.17、25【详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.18、y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为,∵所得的抛物线经过点(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函数的解析式为,故答案为.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。三、解答题(共78分)19、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.【分析】(1)将二次函数的一般式转化为顶点式,即可求出结论;(2)根据抛物线的开口方向和对称轴左右两侧的增减性即可得出结论;(3)根据抛物线的平移规律:括号内左加右减,括号外上加下减,即可得出结论.【详解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴当x=3时,y有最小值,最小值是-5;(2)∵2>0,对称轴为x=3∴抛物线的开口向上∴当x<3时,y随x的增大而减小;(3)∵将该抛物线向右平移2个单位,再向上平移2个单位,∴平移后的解析式为:y=2(x-3-2)2-5+2=2(x-5)2-3即新抛物线的表达式为y=2x2-20x+47【点睛】此题考查的是二次函数的图像及性质,掌握用二次函数的顶点式求最值、二次函数的增减性和二次函数的平移规律是解决此题的关键.20、(1)剪成40cm和80cm的两段;(2)小刚的说法正确,理由见解析.【分析】(1)设剪成一段长为xcm,则另一段长为(120-x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于500cm2建立方程求出其解即可;(2),如果方程有解就说明小刚的说法错误,否则正确.【详解】(1)设剪成一段长为xcm,则另一段长为(120-x)cm,依题意得,解得,,∴把一根120cm长的铁丝剪成40cm和80cm的两段,围成的正方形面积之和为500cm2;(2)小刚的说法正确,因为整理得,,∵△=-1600<0,∴两个正方形的面积之和不可能等于400cm2,∴小刚的说法正确.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,根的判别式的运用,解答本题时找到等量关系建立方程和运用根的判别式是关键.21、(1);(2)当时,w有最大值,最大值为750元【分析】(1)直接利用“总利润=每件的利润×销量”得出函数关系式;
(2)由(1)中的函数解析式,将其配方成顶点式,结合x的取值范围,利用二次函数的性质解答即可.【详解】(1)依题意得:(2)∵∴当,w随x的增大而减小∴当时,w有最大值,最大值为:元.【点睛】本题主要考查了二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数关系式及熟练掌握二次函数的性质.22、(1)详见解析;(2)①1;②﹣1.【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP==2,PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=2﹣a,∵△AEP∽△CED,∴,即,解得,a=,∴PQ=,∴,解得,t1=﹣﹣1(舍去),t2=﹣1,即t的值是﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.23、(1)见解析;(2)见解析【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陵园墓地代理合作协议范本
- 家庭护理员居间服务合同
- 【小学 三年级数学】三年级下册数学口算试题
- 舞台布景设计与制作合同样本
- 2024泰安市工程职业中等专业学校工作人员招聘考试及答案
- 2024泌阳县中等职业技术学校工作人员招聘考试及答案
- 2024湖南省郴州市第一职业中等专业学校工作人员招聘考试及答案
- 2024河北省唐县职业技术教育中心工作人员招聘考试及答案
- 大型仓储设施消防工程合同书
- 物业服务公司员工安全合同责任书模板
- 2023年金钥匙科技初三化学CESL活动竞赛决赛试题及答案
- 电动汽车无线充电技术课件
- 耳鼻咽喉头颈外科学-5.osash及喉科学
- 99S203 消防水泵接合器安装图集
- 第章微生物的遗传与变异
- GB∕T 21489-2018 散粮汽车卸车装置
- 教育部人文社科项目申请书范本-2-副本
- 液力偶合器参数
- 高填方路基及挡土墙施工方案
- 《侧面描写》教学课件.ppt
- 不锈钢栏杆制作与安装工程工检验批质量检验记录
评论
0/150
提交评论