版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞市实验中学数学高一下期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.02.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.3.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-14.甲.乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度.跑步速度均相同,则()A.甲先到教室 B.乙先到教室C.两人同时到教室 D.谁先到教室不确定5.若变量,满足约束条件,且的最大值为,最小值为,则的值是A. B.C. D.6.若满足条件的三角形ABC有两个,那么a的取值范围是()A. B. C. D.7.定义在上的函数若关于的方程(其中)有个不同的实根,,…,,则()A. B. C. D.8.已知集合,集合,则()A. B. C. D.9.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.10.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元二、填空题:本大题共6小题,每小题5分,共30分。11.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米12.在等比数列中,,,则_____.13.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.14.在△ABC中,若,则△ABC的形状是____.15.函数的最小正周期是________.16.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.18.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角(2)若,,求的面积.19.已知数列的各项均不为零.设数列的前项和为,数列的前项和为,且,.(Ⅰ)求,的值;(Ⅱ)证明数列是等比数列,并求的通项公式;(Ⅲ)证明:.20.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.21.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【题目详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【题目点拨】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.2、C【解题分析】
利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【题目详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【题目点拨】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.3、B【解题分析】,所以,。故选B。4、B【解题分析】
设两人步行,跑步的速度分别为,().图书馆到教室的路程为,再分别表示甲乙的时间,作商比较即可.【题目详解】设两人步行、跑步的速度分别为,().图书馆到教室的路程为.则甲所用的时间为:.乙所用的时间,满足+,解得.则===1.∴.故乙先到教室.故选:B.【题目点拨】本题考查了路程与速度、时间的关系、基本不等式的性质,属于基础题.5、C【解题分析】由,由,当最大时,最小,此时最小,,故选C.【题目点拨】本题除了做约束条件的可行域再平移求得正解这种常规解法之外,也可以采用构造法解题,这就要求考生要有较强的观察能力,或者采用设元求出构造所学的系数.6、C【解题分析】
利用正弦定理,用a表示出sinA,结合C的取值范围,可知;根据存在两个三角形的条件,即可求得a的取值范围。【题目详解】根据正弦定理可知,代入可求得因为,所以若满足有两个三角形ABC则所以所以选C【题目点拨】本题考查了正弦定理在解三角形中的简单应用,判断三角形的个数情况,属于基础题。7、C【解题分析】画出函数的图象,如图,由图可知函数的图象关于对称,解方程方程,得或,时有三个根,,时有两个根,所以关于的方程共有五个根,,,故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.8、D【解题分析】
先化简集合,再利用交集运算法则求.【题目详解】,,,故选:D.【题目点拨】本题考查集合的运算,属于基础题.9、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解题分析】∵,∵数据的样本中心点在线性回归直线上,
回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,
∴广告费用为6万元时销售额为9.4×6+9.1=65.5,
故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、2000【解题分析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【题目详解】由题意得,这座山的高度为:米故答案为:2000【题目点拨】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.12、1【解题分析】
由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【题目详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【题目点拨】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.13、或【解题分析】
当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【题目详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【题目点拨】过原点的直线横纵截距都为0,在解题的时候容易漏掉.14、钝角三角形【解题分析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【题目详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【题目点拨】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题15、【解题分析】
根据函数的周期公式计算即可.【题目详解】函数的最小正周期是.故答案为【题目点拨】本题主要考查了正切函数周期公式的应用,属于基础题.16、【解题分析】
先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【题目详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【题目点拨】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【题目详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【题目点拨】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.18、(1)选择①,;选择②,(2)【解题分析】
(1)选择①,利用正弦定理余弦定理化简即得C;选择②,利用正弦定理化简即得C的值;(2)根据余弦定理得,再求的面积.【题目详解】解:(1)选择①根据正弦定理得,从而可得,根据余弦定理,解得,因为,故.选择②根据正弦定理有,即,即因为,故,从而有,故(2)根据余弦定理得,得,即,解得,又因为的面积为,故的面积为.【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(Ⅰ)2,4;(Ⅱ)证明见解析,;(Ⅲ)证明见解析.【解题分析】
(Ⅰ)直接给n赋值求出,的值;(Ⅱ)利用项和公式化简,再利用定义法证明数列是等比数列,即得等比数列的通项公式;(Ⅲ)由(Ⅱ)知,再利用等比数列求和证明不等式.【题目详解】(Ⅰ),令,得,,;令,得,即,,.证明:(Ⅱ),①,②②①得:,,,从而当时,,④③④得:,即,,.又由(Ⅰ)知,,,.数列是以2为首项,以为公比的等比数列,则.(Ⅲ)由(Ⅱ)知,因为当时,,所以.于是.【题目点拨】本题主要考查等比数列性质的证明和通项的求法,考查等比数列求和和放缩法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【解题分析】
本题可先将甲种薄钢板设为x张,乙种薄钢板设为y张,然后根据题意,得出两个不等式关系,也就是3x+6y≥45、5x+6y≥55以及薄钢板的总面积是z=2x+3y,然后通过线性规划画出图像并求出总面积z=2x+3y的最小值,最后得出结果.【题目详解】设甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳3x+6y个,B种产品外壳5x+6y个,由题意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄钢板的总面积是可行域的阴影部分如图所示,其中l1:3x+6y=45、l2:因目标函数z=2x+3y在可行域上的最小值在区域边界的A5此时z的最小值为2×5+3×5=25即甲、乙两种薄钢板各5张,能保证制造A、【题目点拨】(1)利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的平面直角坐标系中的任意一条直线l;②平移:将l平行移动,以确定最优解所对应的点的位置.有时需要进行目标函数l和可行域边界的斜率的大小比较;③求值:解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.(2)用线性规划
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年民政局婚姻解除协议规范格式
- 2024年家居装修中介服务协议
- 2024专业外包工作人员劳动协议
- 2024年纺织用纱线采购协议
- 2024专业化成品油交易协议典范
- 2024个人贷款反担保协议典范
- 2024年度房产销售专属代理协议
- 文书模板-《产业园咨询服务合同》
- 定制化技术服务方案协议2024
- 2024年杭州劳务派遣服务协议样本
- 操作系统课件(6.1 云计算技术)
- 食管癌手术配合
- Brother-TC-S2A机器操作资料课件
- 错纳矿区Ⅰ号矿体铅锌矿800~1100td的露天开采最终开采境界设计说明
- 18慢性肾功能不全临床路径
- 断水层施工方案
- “7_16”大连保税区油库特大爆炸事故原因调查
- 硕士研究生入学登记表
- PCBA常见的一般性不良现象
- 董公选择日要览[整理版]
- 师德的五项修炼(修心、修口、修眼、修耳、修身)
评论
0/150
提交评论