漳州市重点中学2024届数学高一下期末监测试题含解析_第1页
漳州市重点中学2024届数学高一下期末监测试题含解析_第2页
漳州市重点中学2024届数学高一下期末监测试题含解析_第3页
漳州市重点中学2024届数学高一下期末监测试题含解析_第4页
漳州市重点中学2024届数学高一下期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

漳州市重点中学2024届数学高一下期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两条直线m,n,两个平面α,β,下列命题正确是()A.m∥n,m∥α⇒n∥α B.α∥β,m⊂α,n⊂β⇒m∥nC.α⊥β,m⊂α,n⊂β⇒m⊥n D.α∥β,m∥n,m⊥α⇒n⊥β2.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.123.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.已知数列的前项和为,且,则()A. B. C. D.5.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-116.过点且与圆相切的直线方程为()A. B.或C.或 D.或7.一张方桌的图案如图所示,将一颗豆子随机地扔到桌面上,假设豆子不落在线上,下列事件的概率:(1)豆子落在红色区域概率为;(2)豆子落在黄色区域概率为;(3)豆子落在绿色区域概率为;(4)豆子落在红色或绿色区域概率为;(5)豆子落在黄色或绿色区域概率为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个8.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛9.已知为等差数列,,则的值为()A.3 B.2 C. D.110.在等差数列中,若,则的值为()A.15 B.21 C.24 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若,则________.12.直线的倾斜角为_____________13.设满足约束条件若目标函数的最大值为,则的最小值为_________.14.若集合,,则集合________.15.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.16.函数在的递减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.18.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.19.已知函数(),设函数在区间上的最大值为.(1)若,求的值;(2)若对任意的恒成立,试求的最大值.20.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份

2010

2011

2012

2013

2014

时间代号

1

2

3

4

5

储蓄存款(千亿元)

5

6

7

8

10

(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中21.已知为等差数列,且,.(1)求的通项公式;(2)若等比数列满足,,求数列的前项和公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

在A中,n∥α或n⊂α;在B中,m与n平行或异面;在C中,m与n相交、平行或异面;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β.【题目详解】由两条直线m,n,两个平面α,β,知:在A中,m∥n,m∥α⇒n∥α或n⊂α,故A错误;在B中,α∥β,m⊂α,n⊂β⇒m与n平行或异面,故B错误;在C中,α⊥β,m⊂α,n⊂β⇒m与n相交、平行或异面,故C错误;在D中,由线面垂直的判定定理得:α∥β,m∥n,m⊥α⇒n⊥β,故D正确.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2、A【解题分析】

可先由弧长计算出半径,再计算面积.【题目详解】设扇形半径为,则,,.故选:A.【题目点拨】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.3、B【解题分析】

该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【题目详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【题目点拨】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.4、D【解题分析】

通过和关系,计算通项公式,再计算,代入数据得到答案.【题目详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【题目点拨】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.5、D【解题分析】

分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【题目详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【题目点拨】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.6、C【解题分析】

分别考虑斜率存在和不存在两种情况得到答案.【题目详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【题目点拨】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.7、B【解题分析】试题分析:方桌共有块,其中红色的由块,黄色的由块,,绿色的由块,所以(1)(2)(3)结论正确,故选择B.这里表面上看是与面积相关的几何概型,其实还是古典概型考点:古典概型的概率计算和事件间的关系.8、D【解题分析】

由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【题目详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【题目点拨】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.9、D【解题分析】

根据等差数列下标和性质,即可求解.【题目详解】因为为等差数列,故解得.故选:D.【题目点拨】本题考查等差数列下标和性质,属基础题.10、D【解题分析】

利用等差数列的性质,将等式全部化为的形式,再计算。【题目详解】因为,且,则,所以.故选D【题目点拨】本题考查等差数列的性质,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先算出的坐标,然后利用即可求出【题目详解】因为,所以因为,所以即,解得故答案为:【题目点拨】本题考查的是向量在坐标形式下的相关计算,较简单.12、【解题分析】

先求得直线的斜率,由此求得对应的倾斜角.【题目详解】依题意可知,直线的斜率为,故倾斜角为.故答案为:【题目点拨】本小题主要考查直线斜率和倾斜角的计算,属于基础题.13、【解题分析】

试题分析:试题分析:由得,平移直线由图象可知,当过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.14、【解题分析】由题意,得,,则.15、1【解题分析】

利用线面平行的性质定理来进行解答.【题目详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【题目点拨】本题考查线面平行的性质定理,是基础题.16、【解题分析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【题目详解】,由得,,时,.即所求减区间为.故答案为.【题目点拨】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2)答案见解析.【解题分析】试题分析:(1)由图象可得甲、乙两人五次测试的成绩分别为,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根据平均数,方差的公式代入计算得解(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.试题解析:(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.18、(Ⅰ)(Ⅱ)【解题分析】

(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【题目详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【题目点拨】本题考查了根据正余弦定理解三角形,属于简单题.19、(1);(2)【解题分析】

(1)根据二次函数的单调性得在区间,单调递减,在区间单调递增,从得而得;(2)①当时,在区间上是单调函数,则,利用不等式的放缩法求得;②当时,对进行分类讨论,求得;从而求得k的最大值为.【题目详解】(1)当时,,结合图像可知,在区间,单调递减,在区间单调递增..(2)①当时,在区间上是单调函数,则,而,,,∴.②当时,的对称轴在区间内,则,又,(ⅰ)当时,有,,则,(ⅱ)当时,有,则,所以,对任意的都有,综上所述,时在区间的最大值为,所以k的最大值为.【题目点拨】本题考查一元二次函数的图象与性质、含参问题中的恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意讨论的完整性.20、(Ⅰ),(Ⅱ)千亿元.【解题分析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论