2024届北京市顺义区第九中学数学高一下期末经典模拟试题含解析_第1页
2024届北京市顺义区第九中学数学高一下期末经典模拟试题含解析_第2页
2024届北京市顺义区第九中学数学高一下期末经典模拟试题含解析_第3页
2024届北京市顺义区第九中学数学高一下期末经典模拟试题含解析_第4页
2024届北京市顺义区第九中学数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市顺义区第九中学数学高一下期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,则等于()A. B.C.或 D.或2.已知实数满足,则的最大值为()A.8 B.2 C.4 D.63.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.4.不等式的解集是()A. B.C. D.5.给出函数为常数,且,,无论a取何值,函数恒过定点P,则P的坐标是A. B. C. D.6.已知数列满足,则()A. B. C. D.7.执行如图所示的程序框图,令,若,则实数a的取值范围是A. B.C. D.8.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数9.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.10.为了得到函数,(x∈R)的图象,只需将(x∈R)的图象上所有的点().A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.若等比数列的各项均为正数,且,则等于__________.12.如果,,则的值为________(用分数形式表示)13.若直线的倾斜角为,则______.14.已知等差数列的前三项为,则此数列的通项公式为______15.已知向量,,若,则实数__________.16.如图,在△中,三个内角、、所对的边分别为、、,若,,为△外一点,,,则平面四边形面积的最大值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知正项等比数列中,,,等差数列中,,且.(1)求数列的通项公式;(2)求数列的前项和.18.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.19.已知公差不为0的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.20.王某2017年12月31日向银行贷款元,银行贷款年利率为,若此贷款分十年还清(2027年12月31日还清),每年年底等额还款(每次还款金额相同),设第年末还款后此人在银行的欠款额为元.(1)设每年的还款额为元,请用表示出;(2)求每年的还款额(精确到元).21.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】在中,已知,由余弦定理,即,解得或,又,或,故选C.2、D【解题分析】

设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【题目详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【题目点拨】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.3、A【解题分析】

设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【题目详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【题目点拨】本题考查球的体积,关键是确定球心位置求出球的半径.4、D【解题分析】

把不等式,化简为不等式,即可求解,得到答案.【题目详解】由题意,不等式,可化为,即,解得或,所以不等式的解集为.故选:D.【题目点拨】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解题分析】试题分析:因为恒过定点,所以函数恒过定点.故选D.考点:指数函数的性质.6、B【解题分析】

分别令,求得不等式,由此证得成立.【题目详解】当时,,当时,,当时,,所以,所以,故选B.【题目点拨】本小题主要考查根据数列递推关系判断项的大小关系,属于基础题.7、D【解题分析】该程序的功能是计算并输出分段函数.当时,,解得;当时,,解得;当时,,无解.综上,,则实数a的取值范围是.故选D.8、C【解题分析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.9、D【解题分析】

根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【题目详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【题目点拨】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.10、D【解题分析】

根据函数的平移原则,即可得出结果.【题目详解】因为,,所以为了得到函数的图象,只需将的图象上所有的点向左平移个单位.故选D【题目点拨】本题主要考查三角函数的平移,熟记左加右减的原则即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、50【解题分析】由题意可得,=,填50.12、【解题分析】

先求出,可得,再代值计算即可.【题目详解】.故答案为:【题目点拨】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.13、【解题分析】

首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【题目详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【题目点拨】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.14、【解题分析】由题意可得,解得.

∴等差数列的前三项为-1,1,1.

则1.

故答案为.15、【解题分析】

根据平面向量时,列方程求出的值.【题目详解】解:向量,,若,则,即,解得.故答案为:.【题目点拨】本题考查了平面向量的坐标运算应用问题,属于基础题.16、【解题分析】

根据题意和正弦定理,化简得,进而得到,在中,由余弦定理,求得,进而得到,,得出四边形的面积为,再结合三角函数的性质,即可求解.【题目详解】由题意,在中,因为,所以,可得,即,所以,所以,又因为,可得,所以,即,因为,所以,在中,,由余弦定理,可得,又因为,所以为等腰直角三角形,所以,又因为,所以四边形的面积为,当时,四边形的面积有最大值,最大值为.故答案为:.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)设正项等比数列的公比为q(q>0),由已知列式求得公比,则等比数列的通项公式可求;(2)由,求解等差数列的公差,则数列的前n项和可求.【题目详解】(1)设正项等比数列的公比为q(q>0),由,得,则q=3.;(2)设等差数列的公差为d,由,得,∴d=3.∴数列的前n项和【题目点拨】本题主要考查等差数列的通项公式与求和公式,考查了等比数列的通项公式,意在考查综合应用所学知识解答问题的能力,属于中档题.18、(1)或;(2)或.【解题分析】

(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【题目详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【题目点拨】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.19、(1)(2)【解题分析】

试题分析:(1)由已知条件,利用等差数列的前n项和公式和通项公式及等比数列的性质列出方程组,求出等差数列的首项和公差,由此能求出数列{an}的通项公式;(2)由题意推导出bn=22n+1+1,由此利用分组求和法能求出数列{bn}的前n项和.详解:(Ⅰ)设等差数列的公差为.因为,所以.①因为成等比数列,所以.②由①,②可得:.所以.(Ⅱ)由题意,设数列的前项和为,,,所以数列为以为首项,以为公比的等比数列所以点睛:这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出作差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.20、(1)(2)12950元【解题分析】

(1)计算100000元到第二年年末的本利和,减去第一次还的元到第二年年末的本利和,再减去第二年年末还的元,可得;(2)根据100000元到第10年年末的本利和与每年还款元到第10年年末的本利和相等,得到关于的方程组,进而求得的值.【题目详解】(1)由题意得:.(2)因为所以,解得:.【题目点拨】本题以生活中的贷款问题为背景,考查利用等比数列知识解决问题,考查数学建模能力和运算求解能力,求解时要先读懂题意,并理解复利算法,是成功解决问题的关键.21、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解题分析】

(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论