版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省郧阳中学数学高一第二学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生2.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α;②α//β,m⊂α,n⊂β⇒m//n;③m//n,m//α⇒n//α;④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①④B.②④C.①③D.②③3.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.44.在等比数列中,,,则的值为()A.3或-3 B.3 C.-3 D.不存在5.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.6.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.7.已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.8.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称9.若函数有零点,则实数的取值范围为()A. B. C. D.10.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值是__________.12.已知,,则________.13.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.14.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.15.___________.16.已知数列的通项公式为,是其前项和,则_____.(结果用数字作答)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.18.解关于不等式:19.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.20.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.21.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件2、A【解题分析】依据线面垂直的判定定理可知命题①是正确的;对于命题②,直线m,n还有可能是异面,因此不正确;对于命题③,还有可能直线n⊂α,因此③命题不正确;依据线面垂直的判定定理可知命题④是正确的,故应选答案A.3、B【解题分析】
对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【题目详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【题目点拨】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.4、C【解题分析】
解析过程略5、A【解题分析】
根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【题目详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【题目点拨】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.6、A【解题分析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【题目详解】因为与的等差中项为,所以,因此有,故本题选A.【题目点拨】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,7、A【解题分析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.8、A【解题分析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【题目详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【题目点拨】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.9、D【解题分析】
令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【题目详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【题目点拨】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.10、B【解题分析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【题目点拨】二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.12、【解题分析】
由二倍角求得α,则tanα可求.【题目详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【题目点拨】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.13、乙;【解题分析】
一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【题目详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【题目点拨】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.14、.【解题分析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.15、【解题分析】
先将写成的形式,再根据诱导公式进行求解.【题目详解】由题意得:.故答案为:.【题目点拨】考查三角函数的诱导公式.,,,,.16、.【解题分析】
由题意知,数列的偶数项成等差数列,奇数列成等比数列,然后利用等差数列和等比数列的求和公式可求出的值.【题目详解】由题意可得,故答案为.【题目点拨】本题考查奇偶分组求和,同时也考查等差数列求和以及等比数列求和,解题时要得出公差和公比,同时也要确定出对应的项数,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【题目详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【题目点拨】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.18、当时,;当时,;当时,;当时,;当时,【解题分析】试题分析:当时,;当时,当时,;当时,;当时,考点:解不等式点评:本题中的不等式带有参数,在求解时需对参数做适当的分情况讨论,题目中主要讨论的方向是:不等式为一次不等式或二次不等式,解二次不等式与二次方程的根有关,进而讨论二次方程的根的大小19、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)利用,化简得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面积公式得,得到,再利用,即可求解.【题目详解】(Ⅰ)由题意知,即,由正弦定理,得,①,由余弦定理,得,又因为,所以.(Ⅱ)因为,,由面积公式得,即.由①得,故,即.【题目点拨】本题考查正弦和余弦定理的应用,属于基础题.20、(1);(2)【解题分析】
(1)利用等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得数列的通项公式.(2)先求得的表达式,利用裂项求和法求得,解不等式求得的取值范围.【题目详解】解:(1)∵成等差数列,得,∵等比数列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【题目点拨】本小题主要考查等差中项的性质,考查等比数列基本量的计算,考查裂项求和法,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临猗煤改电合同范本
- 二零二四年度广告策划与媒体投放服务合同
- 2024版房屋租赁合同范本with详细条款2篇
- 学校器材合同范本
- 信息安全与网络防护技巧考核试卷
- 橡胶制品行业的市场竞争与价格战考核试卷
- 挖机场地租赁合同范本
- 2024年度艺术展览馆展品征集与委托合同
- 2024年度软件开发与定制合同(以实际软件名称为合同标的)3篇
- 公共设施管理的环境设施管理考核试卷
- 无人机器人配送项目计划书
- 光电式传感器的应用课件
- 新能源电动汽车整车性能测试与分析
- 小红书平台调研分析报告
- 不动产测绘培训课件
- 纸质文物保存修复技术研究
- 学无止境终身学习的重要性
- 粤教版小学科学六年级上册单元测试卷附答案(全册)
- 物业工程部培训资料全课件
- 12《我们小点儿声》(教案)部编版道德与法治二年级上册
- 北京市东城区2023-2024学年六年级上学期期末数学试卷
评论
0/150
提交评论