版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市外国语学校2023年九年级数学第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,将小正方形AEFG绕大正方形ABCD的顶点A顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG、DE相交于点O,再连接AO、BE、DG.王凯同学在探究该图形的变化时,提出了四个结论:①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中结论正确的个数有()A.1个 B.2个 C.3个 D.4个2.参加一次聚会的每两人都握了一次手,所有人共握手10
次,若共有
x
人参加聚会,则根据题意,可列方程()A. B. C. D.3.下列判断错误的是()A.有两组邻边相等的四边形是菱形 B.有一角为直角的平行四边形是矩形C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100° B.110° C.115° D.120°5.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.6.抛物线的对称轴是()A.直线 B.直线C.直线 D.直线7.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是()A.2(1+x)2=2.88 B.2x2=2.88 C.2(1+x%)2=2.88 D.2(1+x)+2(1+x)2=2.888.已知二次函数(为常数),当时,函数值的最小值为,则的值为()A. B. C. D.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣3610.下列计算中,结果是的是A. B. C. D.二、填空题(每小题3分,共24分)11.如图是圆心角为,半径为的扇形,其周长为_____________.12.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.13.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是_____.14.方程x2﹣9x=0的根是_____.15.如图,等腰△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,则的值等于_____.16.如图,点A、B分别在反比例函数y=(k1>0)和y=(k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.17.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).18.分解因式:=__________三、解答题(共66分)19.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?20.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.21.(6分)如图,在阳光下的电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,同一时刻,竖起一根1米高的竹竿MN,其影长MF为1.5米,求电线杆的高度.22.(8分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同.从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字.若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜.这个游戏对两人公平吗?请说明理由.23.(8分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.24.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.25.(10分)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.26.(10分)平面直角坐标系中,函数(x>0),y=x-1,y=x-4的图象如图所示,p(a,b)是直线上一动点,且在第一象限.过P作PM∥x轴交直线于M,过P作PN∥y轴交曲线于N.(1)当PM=PN时,求P点坐标(2)当PM>PN时,直接写出a的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由“SAS”可证△DAE≌△BAG,可得BG=DE,即可判断①;设点DE与AB交于点P,由∠ADE=∠ABG,∠DPA=∠BPO,即可判断②;过点A作AM⊥DE,AN⊥BG,易证DE×AM=×BG×AN,从而得AM=AN,进而即可判断③;过点G作GH⊥AD,过点E作EQ⊥AD,由“AAS”可证△AEQ≌△GAH,可得AQ=GH,可得S△ADG=S△ABE,即可判断④.【详解】∵∠DAB=∠EAG=90°,∴∠DAE=∠BAG,又∵AD=AB,AG=AE,∴△DAE≌△BAG(SAS),∴BG=DE,∠ADE=∠ABG,故①符合题意,如图1,设点DE与AB交于点P,∵∠ADE=∠ABG,∠DPA=∠BPO,∴∠DAP=∠BOP=90°,∴BG⊥DE,故②符合题意,如图1,过点A作AM⊥DE,AN⊥BG,∵△DAE≌△BAG,∴S△DAE=S△BAG,∴DE×AM=×BG×AN,又∵DE=BG,∴AM=AN,且AM⊥DE,AN⊥BG,∴AO平分∠DOG,∴∠AOD=∠AOG,故③符合题意,如图2,过点G作GH⊥AD交DA的延长线于点H,过点E作EQ⊥AD交DA的延长线于点Q,∴∠EAQ+∠AEQ=90°,∠EAQ+∠GAQ=90°,∴∠AEQ=∠GAQ,又∵AE=AG,∠EQA=∠AHG=90°,∴△AEQ≌△GAH(AAS)∴AQ=GH,∴AD×GH=AB×AQ,∴S△ADG=S△ABE,故④符合题意,故选:D.【点睛】本题主要考查正方形的性质和三角形全等的判定和性质的综合,添加辅助线,构造全等三角形,是解题的关键.2、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.3、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A.有两组邻边相等的四边形不一定是菱形,故该选项错误;B.有一角为直角的平行四边形是矩形,故该选项正确;C.对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D.矩形的对角线互相平分且相等,故该选项正确;故选:A.【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.4、B【分析】连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.5、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=1.
根据题意,在Rt△OPA中,AP==故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.6、C【解析】用对称轴公式即可得出答案.【详解】抛物线的对称轴,故选:C.【点睛】本题考查了抛物线的对称轴,熟记对称轴公式是解题的关键.7、A【分析】设该市旅游收入的年平均增长率为x,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x的一元二次方程,即可得出结论.【详解】设该市旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为-3,列方程求解可得.【详解】∵,∴抛物线开口向上,且对称轴为,∴在时,有最小值-3,即:,解得,故选:B.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键.9、B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=(k<0)的图象经过点B,∴﹣4=,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.10、D【解析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A、a2+a4≠a6,不符合;B、a2•a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错.二、填空题(每小题3分,共24分)11、【分析】先根据弧长公式算出弧长,再算出周长.【详解】弧长=,周长==.故答案为:.【点睛】本题考查弧长相关的计算,关键在于记住弧长公式.12、【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.13、1:1.【分析】根据D、E、F分别是AB、BC、AC的中点,得出△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【详解】如图,∵D、E、F分别是AB、BC、AC的中点,∴DEAC,DE∥AC,∴△DEF∽△CAB,∴所得到的△DEF与△ABC的周长之比是:1:1.故答案为1:1.【点睛】本题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.14、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.15、【分析】先证△ABC和△BDC都是顶角为36°的等腰三角形,然后证明△BDC∽△ABC,根据相似三角形的性质即可得出结论.【详解】∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°.∵BD平分∠ABC,∴∠DBC=∠ABD=36°,∴AD=BD,∴∠BDC=72°,∴BD=BC,∴△ABC和△BDC都是顶角为36°的等腰三角形.设CD=x,AD=y,∴BC=BD=y.∵∠C=∠C,∠DBC=∠A=36°,∴△BDC∽△ABC,∴,∴,∴,解得:(负数舍去),∴.故答案为:.【点睛】本题考查了相似三角形的判定与性质以及等腰三角形的性质,掌握相似三角形的判定与性质是解答本题的关键.16、1【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称.
∴P点为AB的中点,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案为1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.17、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=lr是解题的关键.18、【解析】分解因式的方法为提公因式法和公式法及分组分解法.原式==a(3+a)(3-a).三、解答题(共66分)19、(1)w=-10x2+700x-10000(20≤x≤32);(2)当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.【解析】分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;
(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;详解:(1)由题意,得:w=(x-20)•y=(x-20)•(-10x+500)=-10x2+700x-10000,即w=-10x2+700x-10000(20≤x≤32).(2)w=-10x2+700x-10000=-10(x-35)2+2250.对称轴为:x=35,又∵a=-10<0,抛物线开口向下,∴当20≤x≤32时,w随着x的增大而增大,∴当x=32时,w最大=2160.答:当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.点睛:二次函数的应用.重点在于根据题意列出函数关系式.20、(1)(2)当时,的长最大(3)【分析】(1)根据待定系数法求解即可;(2)设点的坐标为、点的坐标为,列出,根据二次函数的图象性质求解即可;(3)分以为对角线时、以为对角线时、以为对角线时三种情况进行讨论求解即可.【详解】解:(1)∵抛物线与轴交于、两点∴将、两点代入,得:∴∴抛物线的解析式为:.(2)∵直线与轴交于点,与轴交于点∴点的坐标为,点的坐标为∴∵点的横坐标为∴点的坐标为,点的坐标为∴∵,∴当时,的长最大.(3)∵由(2)可知,点的坐标为:∴以、、、为顶点的四边形是平行四边形分为三种情况,如图:①以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;②以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即;③以为对角线时∵点的坐标为:,点的坐标为,点的坐标为∴点的坐标为,即.∴综上所述,在(2)的情况下,存在以、、、为顶点的四边形是平行四边形,点的坐标为:、或∴存在个满足题意的点.【点睛】本题考查了二次函数、一次函数和平行四边形的综合应用,涉及到的知识点有待定系数法求解析式、利用一次函数关系式求与坐标轴交点坐标、根据图像信息直接列函数关系式、将二次函数一般式通过配方法转化成顶点式、求当二次函数取最值时的自变量取值、根据平行四边形的性质求得符合要求的点的坐标等,属于压轴题目,有一定难度.21、电线杆子的高为4米.【分析】作CG⊥AB于G,可得矩形BDCG,利用同一时刻物高与影长的比一定得到AG的长度,加上GB的长度即为电线杆AB的高度.【详解】过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===2,∴AB=AG+GB=2+2=4(米),答:电线杆子的高为4米.【点睛】此题考查了相似三角形的应用,构造出直角三角形进行求解是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22、不公平【解析】列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.【详解】这个游戏对双方不公平.理由:列表如下:
12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:,则小刚获胜的概率为:,∵≠,∴这个游戏对两人不公平.【点睛】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根据正方形的性质得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根据弧长的计算公式和扇形的面积公式即可得到结论;(Ⅱ)连接BC′,根据题意得到B在对角线AC′上,根据勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到结论;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FO=AB′=1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论.【详解】解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:如图2,连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=1,∴F在以O为圆心,1为半径的圆上运动,∵DO=1,∴DF最大值为1+1,DF的最小值为1﹣1,∴DF长的取值范围为1﹣1≤DF≤1+1.【点睛】本题考查了旋转的综合题,正方形性质,全等三角形判定与性质,三角形中位线定理.(Ⅲ)问解题的关键是利用中位线定理得出点P的轨迹.24、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年实习合同标准
- 广州市二手房买卖合同标准版
- 广告2026年广告合同范文
- 技术服务 技术许可与转让合同
- 甲状腺手术疼痛护理
- 膀胱癌护理案例分析
- 肺癌手术治疗方法
- 统编版四年级上册语文第八单元 习作我的心儿怦怦跳公开课一等奖创新教学设计
- 第19课 大雁归来 第2课时 公开课一等奖创新教学设计-【课堂无忧】新课标同步核心素养课堂
- 焊工工艺培训课件
- 2022年黑龙江哈尔滨中考满分作文《这也是收获》2
- 第四次全国文物普查工作推进情况汇报3篇
- 2024-2025学年新教材高中地理 第四章 地貌 第二节 地貌的观察教案(2)新人教版必修1
- 《江城子·乙卯正月二十日夜记梦》课件 -2024-2025学年统编版高中语文选择性必修上册
- 新员工岗前安全培训考试题含完整答案【各地真题】
- 第四届“长城杯”网络安全大赛(高校组)初赛备赛试题库-上(单选题部分)
- 国开2024年秋季《形势与政策》大作业答案
- 2024年浙江省初中学业水平考试数学试题(潮汐卷)(解析版)
- 中职教育一年级上学期英语《We Are Friends》课件
- 专题10 议论文阅读(含答案) 2024年中考语文【热点-重点-难点】专练(上海专用)
- 21 小圣施威降大圣 公开课一等奖创新教案
评论
0/150
提交评论