重庆市文理院附属中学2024届数学八上期末考试模拟试题含解析_第1页
重庆市文理院附属中学2024届数学八上期末考试模拟试题含解析_第2页
重庆市文理院附属中学2024届数学八上期末考试模拟试题含解析_第3页
重庆市文理院附属中学2024届数学八上期末考试模拟试题含解析_第4页
重庆市文理院附属中学2024届数学八上期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市文理院附属中学2024届数学八上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知,以两点为圆心,大于的长为半径画圆,两弧相交于点,连接与相较于点,则的周长为()A.8 B.10 C.11 D.132.在代数式中,分式共有().A.2个 B.3个 C.4个 D.5个3.如图,在中,,D是AB上的点,过点D作

交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③ B.①②④ C.②③④ D.①②③④4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.5.马四匹,牛六头,共价四十八两:马三匹,牛五头,共价三十八两.若设每匹马价a两每头牛价b两,可得方程组是()A. B.C. D.6.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.下列各分式中,最简分式是()A. B. C. D.9.如图是一个三级台阶,它的每一级的长、宽和高分别是50cm,30cm,10cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬()A.13cm B.40cm C.130cm D.169cm10.牛顿曾说过:“反证法是数学家最精良的武器之一.”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设()A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中每个内角都大于60°D.三角形中没有一个内角小于60°11.在△ABC中,AB=2cm,AC=5cm,若BC的长为整数,则BC的长可能是()A.2cm B.3cm C.6cm D.7cm12.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有人,则可列方程为()A. B. C. D.二、填空题(每题4分,共24分)13.若P(a﹣2,a+1)在x轴上,则a的值是_____.14.计算:___________________.15.约分:=_____.16.等腰三角形有一个角为,则它的底边与它一腰上的高所在直线相交形成的锐角等于_____度.17.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.18.如图,在正方形的内侧,作等边,则的度数是________.三、解答题(共78分)19.(8分)已知:如图,点在线段上,.求证:.20.(8分)如图,∠MON=30°,点A、A、A、A…在射线ON上,点B、B、B…在射线OM上,△ABA、△ABA、△ABA…均为等边三角形,若OA=1,则△ABA的边长为_________.21.(8分)已知一次函数,它的图像经过,两点.(1)求与之间的函数关系式;(2)若点在这个函数图像上,求的值.22.(10分)先化简再求值:,其中,.23.(10分)如图,在等边中,边长为.点从点出发,沿方向运动,速度为;同时点从点出发,沿方向运动,速度为,当两个点有一个点到达终点时,另一个点随之停止运动.设运动时间为,解答下列问题:(1)当时,_______(用含的代数式表示);(2)当时,求的值,并直接写出此时为什么特殊的三角形?(3)当,且时,求的值.24.(10分)如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?25.(12分)如图,点、、、在同一直线上,已知,,.求证:.26.如图,是由三个等边三角形组成的图形,请仅用无刻度的直尺按要求画图.(1)在图①中画出一个直角三角形,使得AB为三角形的一条边;(2)在图②中画出AD的垂直平分线.(1)(2)

参考答案一、选择题(每题4分,共48分)1、A【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【详解】由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=1.故选A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.2、B【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:代数式是分式,共3个,故选:B.【点睛】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.3、B【解析】由在△ABC中,∠ACB=90°,DE⊥AB,根据等角的余角相等,可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【详解】在△ABC中,∵∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°.∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD.∵AD=BD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=30°.∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选B.【点睛】本题考查了等腰三角形的性质与判定、等边三角形的性质与判定以及直角三角形的性质.注意证得D是AB的中点是解答此题的关键.4、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5、B【分析】根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”列出方程组即可.【详解】解:若设每匹马价a两,每头牛价b两,则可得方程组:,故选:B.【点睛】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.6、D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【详解】解:,,∵,∴,整理,得,∴,∴.故选D.【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.7、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.8、A【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可.【详解】的分子、分母都不能再分解,且不能约分,是最简分式,故A选项符合题意.=m-n,故B选项不符合题意·,=,故C选项不符合题意·,=,故D选项不符合题意·,故选A.【点睛】本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.最简分式的标准:分子,分母中不含有公因式,不能再约分,熟练掌握最简分式的标准是解题关键.9、C【解析】将台阶展开,如图所示,因为BC=3×10+3×30=120,AC=50,由勾股定理得:cm,故正确选项是C.10、C【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答.【详解】解:用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设三角形中每个内角都大于60°,故选:C.【点睛】此题考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.11、C【解析】根据三角形的三边关系即可求出BC的范围,再选出即可.【详解】∵AB=2cm,AC=5cm∴BC,即BC,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形的三边关系:两边之和大于第三边,两边之差小于第三边.12、D【分析】设参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:元,根据每个同学比原来少摊了1元钱车费即可得到等量关系.【详解】设参加游览的同学共x人,根据题意得:1.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.二、填空题(每题4分,共24分)13、﹣1【分析】直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【详解】解:∵P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1.故答案为:﹣1.【点睛】本题主要考查坐标轴上点的特征,掌握坐标轴上点的特征是解题的关键.14、【分析】根据二次根式乘法法则以及零指数幂的意义先算乘法,然后把积进行相减即可.【详解】解:原式=-41=-=故答案.【点睛】本题考查了二次根式乘法法则和零指数幂的意义.二次根式乘法法则:两个算数平方根的积,等于它们被开方数的积的算术平方根.零指数幂的意义:任何一个不等于0的数的零次幂都等于1.15、【分析】根据分式的基本性质,约分化简到最简形式即可.【详解】,故答案为:.【点睛】考查了分式的基本性质,注意负号可以提到前面,熟记分式约分的方法是解题关键.16、或.【分析】先分情况讨论为顶角或者底角,再根据各情况利用三角形内角和定理求解即可.【详解】解:①当等腰底角时如下图:过B作垂足为D∴∵在等腰中,∴在中,∴此时底边与它一腰上的高所在直线相交形成的锐角等于.②当等腰顶角时如下图:过B作垂足为D∴∵在等腰中,∴∴在中,∴此时底边与它一腰上的高所在直线相交形成的锐角等于.综上所述:等腰三角形顶角为,则底边与它一腰上高所在直线相交形成的锐角等于;等腰三角形底角为,则底边与它一腰上高所在直线相交形成的锐角等于.故答案为:或.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,分类讨论思想是解决等腰三角形计算问题的关键,注意空后有单位时填写答案不需要带单位.17、(a+2)(a﹣2)=a2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a﹣2),图②中阴影部分面积=a2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a﹣2)=a2﹣1,故答案为:(a+2)(a﹣2)=a2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.18、15°【分析】根据等边三角形的性质可得CD=DE,根据正方形的性质可得AD=CD,从而得到AD=DE,再根据等边对等角可得∠DAE=∠DEA,然后求出∠ADE=30°,再根据三角形内角和求出∠DAE,进一步求出∠BAE即可.【详解】解:∵△DCE是等边三角形,

∴CD=DE,

∵四边形ABCD是正方形,

∴CD=AD,

∴AD=DE,

∴∠DAE=∠DEA.

又∠ADE=∠ADC-∠EDC=90°-60°=30°,∴∠EAD=×(180°-30°)=75°,

∴∠BAE=90°-75°=15°.

故答案为:15°.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.三、解答题(共78分)19、见解析.【分析】根据题意先证明△ABC≌△DEF,据此求得∠ABC=∠DEF,再利用平行线的判定进一步证明即可.【详解】∵,∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,∵AC=DF,∠ACB=∠DFE,BC=EF,∴△ABC≌△DEF(SAS),∴∠ABC=∠DEF,∴AB∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键.20、32【分析】根据等边三角形的性质可得:AB=AA,∠BAA=60°,再根据外角的性质即可证出:∠OBA=∠MON,由等角对等边可知:AO=AB=1,即可得:等边三角形△ABA的边长为1=20=21-1,同理可知:等边三角形△ABA的边长为2=21=22-1,以此类推:等边三角形△ABA的边长为,从而求出△ABA的边长.【详解】解:∵△ABA是等边三角形∴AB=AA,∠BAA=60°∵∠MON=30°∴∠OBA=∠BAA-∠MON=30°∴∠OBA=∠MON∴AO=AB=1∴等边三角形△ABA的边长为1=20=21-1,OA=OA+AA=2;同理可得:AO=AB=2∴等边三角形△ABA的边长为2=21=22-1,OA=OA+AA=4;同理可得:AO=AB=4∴等边三角形△ABA的边长为4=22=23-1,OA=OA+AA=8;∴等边三角形△ABA的边长为,∴△ABA的边长为:.故填32.【点睛】此题考查的是等边三角形的性质、等腰三角形的判定及探索规律题,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解决此题的关键.21、(1);(2).【分析】(1)利用待定系数法容易求出一次函数的解析式;(2)将点代入一次函数解析式,容易求出的值.【详解】解:(1).将,两点分别代入一次函数可得:,解得..(2).将点代入一次函数解析式.,故.【点睛】本题考查了利用待定系数法求一次函数的解析式,以及利用一次函数解析式求点的坐标,灵活掌握待定系数法列方程以及解方程是解题关键.22、;1.【分析】先根据完全平方公式、平方差公式、单项式与多项式的乘法法则计算,再合并同类项化简,然后把,代入计算即可.【详解】解:原式当,时原式.【点睛】本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,单项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.23、(1);(2),等边三角形;(1)2或1.【分析】(1)当,可知点P在BA上,所以BP长等于点P运动的总路程减去BC长;(2)若,可证得,用含t的式子表示出AP、AQ,可求出t值,结合平行与等边的性质可知为等边三角形.(1)分类讨论,当时,点可能在边上或在边上,用含t的式子表示出BP的长,可得t值.【详解】(1)设点P运动的路程为s,当时,,即,因为,所以点P在BA上,所以;(2)如图为等边三角形,是等边三角形.∴.解得.所以等边三角形.(1)当点在边上时,.∴.当点在边上时,.∴.【点睛】本题主要考查了等边三角形中的动点问题,涉及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论