重庆市渝中区名校2024届数学八上期末检测试题含解析_第1页
重庆市渝中区名校2024届数学八上期末检测试题含解析_第2页
重庆市渝中区名校2024届数学八上期末检测试题含解析_第3页
重庆市渝中区名校2024届数学八上期末检测试题含解析_第4页
重庆市渝中区名校2024届数学八上期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市渝中区名校2024届数学八上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18° B.24° C.30° D.36°2.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44° B.60° C.67° D.77°3.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.114.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°5.若分式的值为,则的值为A. B. C. D.6.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm8.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.9.已知关于x的多项式的最大值为5,则m的值可能为()A.1 B.2 C.4 D.510.已知二元一次方程组,则m+n的值是()A.1 B.0 C.-2 D.-1二、填空题(每小题3分,共24分)11.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).12.若是一个完全平方式,则的值是______.13.若点,在正比例函数图像上,请写出正比例函数的表达式__________.14.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______.15.如图,中,,,,在上截取,使,过点作的垂线,交于点,连接,交于点,交于点,,则____________.16.计算:_______________.17.如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则__________.18.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.三、解答题(共66分)19.(10分)如图,是边长为9的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于(1)若时,求的长(2)当点,运动时,线段与线段是否相等?请说明理由(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生变化,请说明理由20.(6分)某学校开展美丽校园建设,计划购进A,B两种树苗共21棵,已知A种树苗每棵80元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.21.(6分)某区的校办工厂承担了为全区七年级新生制作夏季校服3000套的任务,为了确保这批新生在开学时准时穿上校服,加快了生产速度,实际比原计划每天多生产50%,结果提前2天圆满完成了任务,求实际每天生产校服多少套.22.(8分)已知a、b是实数.(1)当+(b+5)2=0时,求a、b的值;(2)当a、b取(1)中的数值时,求(-)÷的值.23.(8分)已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.24.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与直线交于点,点是轴上的一个动点,设.(1)若的值最小,求的值;(2)若直线将分割成两个等腰三角形,请求出的值,并说明理由.25.(10分)甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?26.(10分)如图,在中,与的角平分线交于点,.求的度数.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:先根据等腰三角形的性质求得∠C的度数,再根据三角形的内角和定理求解即可.∵AB=AC,∠A=36°∴∠C=72°∵BD是AC边上的高∴∠DBC=180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故选C.3、C【分析】先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,

∴a2b+ab2=ab(a+b)=1.

故选:C.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.4、C【详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.5、A【分析】根据分式值为0,分子为0,分母不为0,得出x+3=0,解方程即可得出答案.【详解】因为分式的值为,所以x+3=0,所以x=-3.故选A.【点睛】考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注:“分母不为零”这个条件不能少.6、A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y轴的交点在y轴的负半轴,∴一次函数的图象经过第二、三、四象限,不经过第一象限,故选:A.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.7、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,

∴EC=DE,

∴AE+DE=AE+EC=3cm.

故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.8、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、B【分析】利用配方法将进行配方,即可得出答案.【详解】解:故解得:故选B.【点睛】本题考查了配方法的运用,掌握配方法是解题的关键.10、D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.二、填空题(每小题3分,共24分)11、变小【分析】根据平均数的求法先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【详解】解:∵李阳再跳一次,成绩为7.7m,∴这组数据的平均数是=7.7,∴这7次跳远成绩的方差是:S2=[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=,∴方差变小;故答案为:变小.【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.12、【分析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵是一个完全平方式,∴k=±2×2×3=±12故答案为:±12【点睛】本题考查的完全平方式,中间项是±两个值都行,别丢掉一个.13、【分析】设正比例函数解析式,将P,Q坐标代入即可求解.【详解】设正比例函数解析式,∵,在正比例函数图像上∴,即∴解得∴正比例函数的表达式为故答案为:.【点睛】本题考查求正比例函数解析式,熟练掌握待定系数法求解析式是解题的关键.14、90°【解析】∵()2+22=()2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为90°.15、【解析】过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.【详解】解:∵AC∥BD,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF⊥AB,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD,∴∠8=∠1,在△BHE和△BGD中,,∴△BHE≌△BGD(ASA),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD⊥BD∴∠BDM=90°,∴BC∥MD,∴∠5=∠MDG,∴∠7=∠MDG∴MG=MD,∵BC=7,BG=4,设MG=x,在△BDM中,BD2+MD2=BM2,即,解得x=,在△ABC和△MBD中,∴△ABC≌△MBD(ASA)AB=BM=BG+MG=4+=.故答案为:.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.16、3【分析】根据负整数指数幂的定义及任何非0数的0次幂为1求解即可.【详解】故答案为:3【点睛】本题考查的是负整数指数幂的定义及0指数幂,掌握及任何非0数的0次幂为1是关键.17、【解析】如图(见解析),延长AD,交BC于点G,先根据等腰三角形的三线合一性得出,再根据折叠的性质、等腰三角形的性质(等边对等角)得出,从而得出是等腰直角三角形,然后根据勾股定理、面积公式可求出AC、CE、CF的长,最后根据线段的和差即可得.【详解】如图,延长AD,交BC于点G平分,,且AG是BC边上的中线由折叠的性质得,即,即是等腰直角三角形,且在中,由三角形的面积公式得即,解得故答案为:.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.18、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.三、解答题(共66分)19、(1)当∠BQD=30°时,AP=3;(2)相等,见解析;(3)DE的长不变,【分析】(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DBQ≌△DFP得出DQ=DP即可得出结论;(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.【详解】(1)解:∵△ABC是边长为9的等边三角形∴∠ACB=60°,且∠BQD=30°∴∠QPC=90°设AP=,则PC=,QB=∴QC=∵在Rt△QCP中,∠BQD=30°∴PC=QC即解得∴当∠BQD=30°时,AP=3(2)相等,证明:过P作PF∥QC,则△AFP是等边三角形∴AP=PF,∠DQB=∠DPF∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,∴△DBQ≌△DFP(AAS)∴QD=PD(3)解:不变,由(2)知△DBQ≌△DFP∴BD=DF∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=为定值,即DE的长不变.【点睛】此题是三角形综合题,主要考查了含30°的直角三角形的性质,等边三角形的性质,全等三角形的判定和性质,判断出△DQB≌△DPF是解本题的关键,作出辅助线是解本题的难点,是一道比较简单的中考常考题.20、(1)y=10x+1470(0≤x≤21);(2)当购买A种树11棵,B种树10棵时,费用最省,所需费用1580元.【分析】(1)由等量关系:购买A种树的费用+购买B种树的费用=购买两种树的总费用,列出表达式即可;(2)由题意列出关于x的不等式,解得x的取值范围,再根据一次函数的增减性求得最小值时的x值即可解答.【详解】(1)由题意可知:购买B种树(21-x)棵,则有:y=80x+70(21-x)=10x+1470(0≤x≤21);(2)∵购买B种树苗的数量少于A种树苗的数量,∴x>21-x,∴x>,∵k=10>0,∴y随着x的增大而增大,又∵x为整数∴当x=11时,y最小,最小值为1580元,答:当购买A种树11棵,B种树10棵时,费用最省,所需费用1580元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答的关键是熟练掌握一次函数的增减性,注意x取整数的隐含条件.21、750套【分析】设原计划每天生产校服x套,根据题意列出方程解答即可.【详解】解:设原计划每天生产校服x套,实际每天生产校服(1+50%)x,可得:解得:x=500,经检验x=500是原分式方程的解,(1+50%)x=1.5×500=750,答:实际每天生产校服750套.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22、(1)a=2,b=-5;(2)ab,-1.【解析】(1)根据非负数的性质,可以求得a、b的值;(2)根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【详解】(1)∵+(b+5)2=0,∴a-2=0,b+5=0,解得,a=2,b=-5;(2)(-)÷===ab,当a=2,b=-5时,原式=2×(-5)=-1.【点睛】本题考查分式的化简求值、非负数的性质,解答本题的关键是明确分式化简求值的方法.23、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由垂直的性质推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根据全等三角形的判定定理“ASA”,即可推出结论;(2)由(1)的结论推出BD=DF,根据AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通过三角形内角和定理即可推出∠BEC=90°,即BE⊥AC.试题解析:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°,又∵∠ACB=45°,∴∠DAC=45°,∴∠ACB=∠DAC,∴AD=CD,在△ABD和△CFD中,∠BAD=∠FCD,AD=CD∠ADB=∠FDC,∴△ABD≌△CFD;(2)∵△ABD≌△CFD,∴BD=FD,∴∠1=∠2,又∵∠FDB=90°,∴∠1=∠2=45°,又∵∠ACD=45°,∴△BEC中,∠BEC=90°,∴BE⊥AC.考点:1.等腰三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.24、(1);(2)5,理由见解析【分析】(1)先求出点A点B的坐标,根据轴对称最短确定出点M的位置,然后根据待定系数法求出直线AD的解析式,进而可求出m的值;(3)分三种情况讨论验证即可.【详解】解:(1)解得,∴A(4,2).把y=0代入得,解得x=5,∴B(5,0),取B关于y轴的对称点D(-5,0),连接AD,交y轴于点M,连接BM,则此时MB+MA=AD的值最小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论