




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
驻马店市重点中学2023年九年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个2.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A. B. C.△ADE∽△ABC D.3.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上4.若双曲线经过第二、四象限,则直线经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限5.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.7.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是()A.平均数 B.众数 C.中位数 D.方差8.如图,BC是⊙O的弦,OA⊥BC,∠AOB=55°,则∠ADC的度数是()A.25° B.55° C.45° D.27.5°9.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.10.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°二、填空题(每小题3分,共24分)11.计算:_____________.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是_____.13.平面内有四个点A、O、B、C,其中∠AOB=1200,∠ACB=600,AO=BO=2,则满足题意的OC长度为整数的值可以是_______.14.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.15.二次函数y=4(x﹣3)2+7的图象的顶点坐标是_____.16.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.17.两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是___________.18.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.三、解答题(共66分)19.(10分)如图,已知三个顶点的坐标分别为,在给出的平面直角坐标系中;(1)画出绕点顺时针旋转后得到的;并直接写出,的坐标;(2)计算线段旋转到位置时扫过的图形面积.20.(6分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,点C在OP上,满足∠CBP=∠ADB.(1)求证:BC是⊙O的切线;(2)若OA=2,AB=1,求线段BP的长.21.(6分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF22.(8分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式;判断此函数图象的形状;并在图②中画出此函数的图象;(3)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.23.(8分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DEx轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.24.(8分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.25.(10分)如图,,分别是,上的点,,于,于.若,,求:(1);(2)与的面积比.26.(10分)如图,在⊿OAB中,∠OAB=90°.OA=AB=6.将⊿OAB绕点O逆时针方向旋转90°得到⊿OA1B1(1)线段A1B1的长是∠AOA1的度数是(2)连结AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=,∴∠BAE30°,故①错误;∵四边形ABCD是正方形,
∴∠B=∠C=90°,AB=BC=CD,
∵AE⊥EF,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF,在△BAE和△CEF中,,
∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③错误;设CF=a,则BE=CE=2a,AB=CD=AD=4a,DF=3a,∴AE=a,EF=a,AF=5a,∴,,∴,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.2、D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.3、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】根据反比例函数的性质得出k﹣1<0,再由一次函数的性质判断函数所经过的象限.【详解】∵双曲线y经过第二、四象限,∴k﹣1<0,则直线y=2x+k﹣1一定经过一、三、四象限.故选:C.【点睛】本题考查了一次函数和反比例函数的性质,属于函数的基础知识,难度不大.5、A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7、C【分析】根据中位数的定义求解可得.【详解】原来这组数据的中位数为=2,无论去掉哪个数据,剩余三个数的中位数仍然是2,故选:C.【点睛】此题考查数据平均数、众数、中位数方差的计算方法,掌握正确的计算方法才能解答.8、D【分析】欲求∠ADC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【详解】∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=55°,∴∠ADC=27.5°.故选:D.【点睛】本题考查垂径定理、圆周角定理.关键是将证明弧相等的问题转化为证明所对的圆心角相等.9、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.二、填空题(每小题3分,共24分)11、1【分析】由题意首先计算乘方、开方和特殊三角函数,然后从左向右依次进行加减计算,即可求出算式的值.【详解】解:===1故答案为1.【点睛】本题主要考查实数的运算,要熟练掌握,解答此题的关键是要明确在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行;另外,有理数的运算律在实数范围内仍然适用.12、(2,﹣3).【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为:(2,﹣3).【点睛】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.13、1,3,3【详解】解:考虑到∠AOB=1100,∠ACB=2,AO=BO=1,分两种情况探究:情况1,如图1,作△AOB,使∠AOB=1100,AO=BO=1,以点O为圆心,1为半径画圆,当点C在优弧AB上时,根据同弧所圆周角是圆心角一半,总有∠ACB=∠AOB=2,此时,OC=AO=BO=1.情况1,如图1,作菱形AOMB,使∠AOB=1100,AO=BO=AM=BM=1,以点M为圆心,1为半径画圆,当点C在优弧AB上时,根据圆内接四边形对角互补,总有∠ACB=1800-∠AOB=2.此时,OC的最大值是OC为⊙M的直径3时,所以,1<OC≤3,整数有3,3.综上所述,满足题意的OC长度为整数的值可以是1,3,3.故答案为:1,3,3.14、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,=36-36k>2,
解得k<1.
故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.15、(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).16、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.17、1:1【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可求得地图的比例尺.【详解】解:因为,所以这幅地图的比例尺是.故答案为:1:1.【点睛】本题考查比例尺.比例尺=图上距离:实际距离,在计算比例尺时一定要将实际距离与地图上的距离的单位化统一.18、30°【分析】由旋转的性质可得BC=CD,∠BCD=∠ACE,可得∠B=∠BDC=50°,由三角形内角和定理可求∠BCD=80°=∠ACE,由外角性质可求解.【详解】解:∵将△ABC绕点C顺时针旋转,∴BC=CD,∠BCD=∠ACE,∴∠B=∠BDC=50°,∴∠BCD=80°=∠ACE,∵∠ACE=∠B+∠A,∴∠A=80°﹣50°=30°,故答案为:30°.【点睛】本题考查了旋转的性质,三角形内角和与三角形外角和性质,解决本题的关键是正确理解题意,熟练掌握旋转的性质,能够由旋转的到相等的角.三、解答题(共66分)19、(1)见解析,;(2)2π【分析】(1)利用网格特点和旋转的旋转画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;
(2)直接利用旋转的性质得出对应点位置进而得出答案,再利用扇形面积求法得出答案.【详解】解:如图,由图可知,.(2)由,∠BAB1=90°,得:.【点睛】此题主要考查了旋转的性质以及三角形、扇形面积求法,正确得出对应点位置是解题关键.20、(1)见解析;(2)BP=1.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP∽△ABD,然后利用相似三角形的对应边成比例求BP的长.【详解】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=1.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.21、1.【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
(1)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.22、(1)圆P的半径为;(2)画出函数图象,如图②所示;见解析;(3)cos∠APD==.【解析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;
(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;
(3)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【详解】(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到,解得:y=,则圆P的半径为(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:图象为开口向上的抛物线,画出函数图象,如图②所示;(3)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:,解得:或(舍去),即PE=,在Rt△PED中,PE=,PD=1,则cos∠APD==.【点睛】本题属于圆的综合题,涉及的知识点主要有两点间的距离公式,勾股定理,二次函数的图象和性质,圆的定义,圆的切线的性质,弄清题意是解决本题的关键.23、(1)m>-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判别式解答即可;(2)将点A的坐标代入抛物线y=-x2+2x+m即可求出解析式,由抛物线的解析式求出点B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中即可求出直线BC的解析式;(3)由点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),得到DF=-x2+2x+3-(-x+3)=-x2+3x=,利用顶点式解析式的性质解答即可.【详解】(1)当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x2+2x+3,且C(0,3),当x=0时,-x2+2x+3=0,解得x=-1,或x=3,∴B(3,0),设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)代入y=kx+b中,得:,解得,∴直线AB的解析式为y=-x+3;(3)点D在抛物线上,设坐标为(x,-x2+2x+3),F在直线AB上,坐标为(x,-x+3),∴DF=-x2+2x+3-(-x+3)=-x2+3x=,∴当时,DF最大,为,此时D的坐标为().【点睛】此题考查了利用判别式已知抛物线与坐标轴的交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租客合同终止租房协议
- 技术开发与转让合同保密范本
- 智能化系统供货安装合同样本
- 矿山企业轮换工劳动合同模板及示例
- 农村土地出租权属合同样本
- 标准货物销售合同简版
- 城市配送服务合同一览
- 小学生种花演讲课件
- 影视设备行业交流服务批发考核试卷
- 广播电视节目的心理影响与教育意义考核试卷
- 低温绝热液氧瓶充装操作规程模版(2篇)
- 大众汽车使用说明书
- (高清版)DZT 0145-2017 土壤地球化学测量规程
- 供热公司安全教育知识
- 高中英语课程纲要
- 《药物设计学》课件
- 随机微分方程
- 道路设施施工现场安全管理基本要求
- 公寓楼改造装修施工方案
- 烟台大学化学化工学院实验室仪器设备搬迁项目
- 2022版10kV架空配电线路无人机自主巡检作业导则
评论
0/150
提交评论