版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省楚雄州元谋县一中2024届数学高一第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.2.若实数,满足约束条件,则的取值范围是()A. B. C. D.3.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.4.已知直线,,若,则()A.2 B. C. D.15.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.19006.若集合,则集合()A. B. C. D.7.若函数,则()A.9 B.1 C. D.08.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.9.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.10.如图,三棱柱中,侧棱底面ABC,,,,则异面直线与所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一组样本数据8,10,18,12的方差为___________.12.若是等比数列,,,则________13.在空间直角坐标系中,点关于原点的对称点的坐标为__________.14.已知平面向量,,满足:,且,则的最小值为____.15.数列的前项和为,,且(),记,则的值是________.16.从分别写有1,2,3,4,5的五张卡片中,任取两张,这两张卡片上的数字之差的绝对值等于1的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?18.已知函数,求其定义域.19.某学校高一、高二、高三的三个年级学生人数如下表
高三
高二
高一
女生
133
153
z
男生
333
453
633
按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.20.已知向量,其中.函数的图象过点,点与其相邻的最高点的距离为1.(Ⅰ)求函数的单调递减区间;(Ⅱ)计算的值;(Ⅲ)设函数,试讨论函数在区间[0,3]上的零点个数.21.已知关于的不等式.(1)若不等式的解集为,求;(2)当时,解此不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
化圆心角为弧度值,再由扇形面积公式求解即可.【题目详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【题目点拨】本题主要考查扇形的面积公式的应用.2、D【解题分析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、C【解题分析】试题分析:有两个面平行,其余各面都是四边形的几何体,A错;有两个面平行,其余各面都是平行四边形的几何体如图所示,B错;用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,D错;由棱柱的定义,C正确;考点:1、棱柱的概念;2、棱台的概念.4、D【解题分析】
当为,为,若,则,由此求解即可【题目详解】由题,因为,所以,即,故选:D【题目点拨】本题考查已知直线垂直求参数问题,属于基础题5、B【解题分析】
根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【题目详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【题目点拨】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、D【解题分析】试题分析:作数轴观察易得.考点:集合的基本运算.7、B【解题分析】
根据的解析式即可求出,进而求出的值.【题目详解】∵,∴,故,故选B.【题目点拨】本题主要考查分段函数的概念,以及已知函数求值的方法,属于基础题.8、B【解题分析】由题直角中,三条边恰好为三个连续的自然数,设三边为解得以三个顶点为圆心的扇形的面积和为由题故选B.9、C【解题分析】
方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【题目详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【题目点拨】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.10、A【解题分析】
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知求与的坐标,由两向量所成角的余弦值求解异面直线与所成角的余弦值.【题目详解】如图,以为坐标原点,分别以所在直线为轴建立空间直角坐标系,由已知得:,,所以,.设异面直线与所成角,则故异面直线与所成角的余弦值为.故选:A【题目点拨】本题主要考查了利用空间向量求解线线角的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、14【解题分析】
直接利用平均数和方差的公式,即可得到本题答案.【题目详解】平均数,方差.故答案为:14【题目点拨】本题主要考查平均数公式与方差公式的应用.12、【解题分析】
根据等比数列的通项公式求解公比再求和即可.【题目详解】设公比为,则.故故答案为:【题目点拨】本题主要考查了等比数列的基本量求解,属于基础题型.13、【解题分析】
空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【题目详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【题目点拨】本题考查了空间直角坐标系关于原点对称,属于简单题.14、-1【解题分析】
,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【题目详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【题目点拨】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.15、3【解题分析】
由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【题目详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【题目点拨】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.16、【解题分析】
基本事件总数n,利用列举法求出这两张卡片上的数字之差的绝对值等于1包含的基本事件有4种情况,由此能求出这两张卡片上的数字之差的绝对值等于1的概率.【题目详解】从分别写有1,2,3,4,5的五张卡片中,任取两张,基本事件总数n,这两张卡片上的数字之差的绝对值等于1包含的基本事件有:(1,2),(2,3),(3,4),(4,5),共4种情况,∴这两张卡片上的数字之差的绝对值等于1的概率为p.故答案为.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当时,最大,最大值为【解题分析】
设,,在中,由余弦定理,基本不等式可得,根据三角形的面积公式即可求解.【题目详解】解:设,在中,由余弦定理得:,由基本不等式,,可得,当且仅当时取等号,∴,当且仅当时取等号,此时,∴当时,最大,最大值为.【题目点拨】本题主要考查余弦定理,基本不等式,三角形的面积公式的综合应用,考查了计算能力和转化思想,属于基础题.18、【解题分析】
由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【题目详解】由题意得:,即,解得:定义域为【题目点拨】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.19、(1)433(2)(3)【解题分析】
(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13个,其中至少有1名女生的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以从中任取2人,至少有1名女生的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过3.5的数为1.4,2.6,1.2,2.7,1.3,1.3这6个数,总的个数为2,所以该数与样本平均数之差的绝对值不超过3.5的概率为.20、(Ⅰ),;(Ⅱ)2028;(Ⅲ)详见解析.【解题分析】
(Ⅰ)由数量积的坐标运算可得f(x),由题意求得ω,再由函数f(x)的图象过点B(2,2)列式求得.则函数解析式可求,由复合函数的单调性求得f(x)的单调递增区间;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.进一步可得结论;(Ⅲ)g(x)=f(x)﹣m﹣2,函数g(x)在[0,3]上的零点个数,即为函数y=sin的图象与直线y=m在[0,3]上的交点个数.数形结合得答案.【题目详解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,则点B(2,2)为函数f(x)的图象的一个最高点.∵点B与其相邻的最高点的距离为2,∴,得ω.∵函数f(x)的图象过点B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的单调递减区间是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常见的股权转让协议样本
- 标准供货合同格式指南
- 2024年度资产处置债务协议书
- 工程地质勘察合同样本
- 标准二手房合同范本
- 房产项目转让协议范本
- 包含子女抚养条款的离婚协议书
- 食品报废处理合作协议书
- 油漆代理销售合同
- 2024年离婚协议书范本参考
- 关于生活中物理的课件
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题集锦带答案
- 2023数据安全专项考核试题及答案
- 麦克斯韦速率分布律的推导与验证
- 互联网开放平台解决方案
- 洗衣房各种布草洗涤程序
- 农村电商知到章节答案智慧树2023年西昌学院
- 2023年江苏省数学竞赛初赛试题原题详解
- 酒精(乙醇)安全技术说明书(MSDS)
- 食品生产质量手册
- 《建设项目全过程造价咨询规程27188307》课件
评论
0/150
提交评论