2024届江西省九江市高一数学第二学期期末预测试题含解析_第1页
2024届江西省九江市高一数学第二学期期末预测试题含解析_第2页
2024届江西省九江市高一数学第二学期期末预测试题含解析_第3页
2024届江西省九江市高一数学第二学期期末预测试题含解析_第4页
2024届江西省九江市高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省九江市高一数学第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足:,,则该数列中满足的项共有()项A. B. C. D.2.用辗转相除法,计算56和264的最大公约数是().A.7 B.8 C.9 D.63.设点M是直线上的一个动点,M的横坐标为,若在圆上存在点N,使得,则的取值范围是()A. B. C. D.4.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.5.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件6.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.7.圆心在(-1,0),半径为的圆的方程为()A. B.C. D.8.的内角的对边分别为,若,则()A. B. C. D.9.在等比数列{an}中,a2=8,a5=64,,则公比q为()A.2 B.3 C.4 D.810.若直线与直线平行,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知呈线性相关的变量,之间的关系如下表所示:由表中数据,得到线性回归方程,由此估计当为时,的值为______.12.已知函数,则的取值范围是____13.已知向量,,且,则______.14.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.15.已知,则____________.16.若数列是正项数列,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.18.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?19.某校为了了解学生每天平均课外阅读的时间(单位:分钟),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天课外阅读时间的频率分布直方图,如图所示,若每天课外阅读时间不超过30分钟的有45人.(Ⅰ)求,的值;(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).20.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.21.如图,三棱锥中,,、、、分别是、、、的中点.(1)证明:平面;(2)证明:四边形是菱形

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

利用累加法求出数列的通项公式,然后解不等式,得出符合条件的正整数的个数,即可得出结论.【题目详解】,,,解不等式,即,即,,则或.故选:C.【题目点拨】本题考查了数列不等式的求解,同时也涉及了利用累加法求数列通项,解题的关键就是求出数列的通项,考查运算求解能力,属于中等题.2、B【解题分析】

根据辗转相除法计算最大公约数.【题目详解】因为所以最大公约数是8,选B.【题目点拨】本题考查辗转相除法,考查基本求解能力.3、D【解题分析】

由题意画出图形,根据直线与圆的位置关系可得相切,设切点为P,数形结合找出M点满足|MP|≤|OP|的范围,从而得到答案.【题目详解】由题意可知直线与圆相切,如图,设直线x+y−2=0与圆相切于点P,要使在圆上存在点N,使得,使得最大值大于或等于时一定存在点N,使得,而当MN与圆相切时,此时|MP|取得最大值,则有|MP|≤|OP|才能满足题意,图中只有在M1、M2之间才可满足,∴的取值范围是[0,2].故选:D.【题目点拨】本题考查直线与圆的位置关系,根据数形结合思想,画图进行分析可得,属于中等题.4、B【解题分析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.5、A【解题分析】

事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【题目详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【题目点拨】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.6、A【解题分析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。7、A【解题分析】

根据圆心和半径可直接写出圆的标准方程.【题目详解】圆心为(-1,0),半径为,则圆的方程为故选:A【题目点拨】本题考查圆的标准方程的求解,属于简单题.8、B【解题分析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【题目详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【题目点拨】本题主要考查正弦定理的运用,难度不大.9、A【解题分析】,选A.10、A【解题分析】由题意,直线,则,解得,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由表格得,又线性回归直线过点,则,即,令,得.点睛:本题考查线性回归方程的求法和应用;求线性回归方程是常考的基础题型,其主要考查线性回归方程一定经过样本点的中心,一定要注意这一点,如本题中利用线性回归直线过中心点求出的值.12、【解题分析】

分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【题目详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【题目点拨】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】

根据的坐标表示,即可得出,解出即可.【题目详解】,,.【题目点拨】本题主要考查平行向量的坐标关系应用.14、【解题分析】

圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【题目详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【题目点拨】此题考察圆柱侧面积公式,属于基础题目.15、【解题分析】

由已知结合同角三角函数基本关系式可得,然后分子分母同时除以求解.【题目详解】,.故答案为:.【题目点拨】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.16、【解题分析】

有已知条件可得出,时,与题中的递推关系式相减即可得出,且当时也成立。【题目详解】数列是正项数列,且所以,即时两式相减得,所以()当时,适合上式,所以【题目点拨】本题考差有递推关系式求数列的通项公式,属于一般题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解题分析】

(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【题目详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【题目点拨】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)选择C;(2)第4或第5年.【解题分析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【题目详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【题目点拨】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.19、(Ⅰ);(Ⅱ)中位数估计值为32,平均数估计值为32.5.【解题分析】

(Ⅰ)由频率分布直方图的性质列出方程组,能求出,;(Ⅱ)由频率分布直方图,能估计该校学生每天课外阅读时间的中位数及平均值.【题目详解】(Ⅰ)由题意得,解得(Ⅱ)设该校学生每天课外阅读时间的中位数估计值为,则解得:.该校学生每天课外阅读时间的平均数估计值为:.答:该校学生每天课外阅读时间的中位数估计值为32,平均数估计值为32.5.【题目点拨】本题考查频率、中位数、平均数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.20、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解题分析】

(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率/组距作为纵坐标,即可做出频率分布直方图.【题目详解】某厂生产的一批零件1000个,差异不明显,且因需要研究的个体很多.

所以适宜用系统抽样.(2)①频率分布表为分组频数频率20.160.380.440.2合计201②频率分布直方图为.分组频数频率频率/组距20.10.0260.30.0680.40.0840.20.04合计201【题目点拨】本题考查频率分布表和根据频率分布表绘制频率分布直方图,属于基础题.21、(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论