2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题含解析_第1页
2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题含解析_第2页
2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题含解析_第3页
2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题含解析_第4页
2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西藏日喀则市南木林高级中学数学高一第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C所对的边分别为a,b,c,,,,则()A. B. C. D.2.如图,在下列四个正方体中,,,,,,,为所在棱的中点,则在这四个正方体中,阴影平面与所在平面平行的是()A. B.C. D.3.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.254.函数的最小值为(

)A.6 B.7 C.8 D.95.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.66.()A.0 B.1 C.-1 D.27.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.8.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件9.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.10.如图,测量河对岸的塔高时,选与塔底B在同一水平面内的两个测点C与D.现测得,,,并在点C测得塔顶A的仰角为,则塔高为()A. B. C.60m D.20m二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.12.空间两点,间的距离为_____.13.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.14.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.15.观察下列式子:你可归纳出的不等式是___________16.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是平行四边形,平面,,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.18.已知向量,,且.(1)求的值;(2)求的值.19.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.20.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.21.已知函数(1)求函数的最大值,以及取到最大值时所对应的的集合;(2)在上恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据正弦定理,得到的值,然后判断出,从而得到.【题目详解】在中,由正弦定理得,所以,因为,,所以,所以为锐角,所以.故选:C.【题目点拨】本题考查余弦定理解三角形,属于简单题.2、A【解题分析】

根据线面平行判定定理以及作截面逐个分析判断选择.【题目详解】A中,因为,所以可得平面,又,可得平面,从而平面平面B中,作截面可得平面平面(H为C1D1中点),如图:C中,作截面可得平面平面(H为C1D1中点),如图:D中,作截面可得为两相交直线,因此平面与平面不平行,如图:【题目点拨】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.3、C【解题分析】

将|a+b4、C【解题分析】

直接利用均值不等式得到答案.【题目详解】,时等号成立.故答案选C【题目点拨】本题考查了均值不等式,属于简单题.5、A【解题分析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.6、A【解题分析】

直接利用三角函数的诱导公式化简求值.【题目详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【题目点拨】本题考查利用诱导公式化简求值,是基础的计算题.7、C【解题分析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【题目详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【题目点拨】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.8、A【解题分析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【题目详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题9、B【解题分析】

可先确定奇偶性,再确定单调性.【题目详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【题目点拨】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.10、D【解题分析】

由正弦定理确定的长,再求出.【题目详解】,由正弦定理得:故选D【题目点拨】本题是正弦定理的实际应用,关键是利用正弦定理求出,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12、【解题分析】

根据空间中两点间的距离公式即可得到答案【题目详解】由空间中两点间的距离公式可得;;故距离为3【题目点拨】本题考查空间中两点间的距离公式,属于基础题。13、【解题分析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.14、【解题分析】

如图

分别作于A,于C,于B,于D,

连CQ,BD则,,

当且仅当,即点A与点P重合时取最小值.

故答案选C.【题目点拨】15、【解题分析】

观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【题目详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【题目点拨】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.16、【解题分析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【题目详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【题目点拨】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】

(1)证明平面平面,然后利用平面与平面平行的性质得出平面;(2)作于点,连接,证明出平面,可得出直线与平面所成的角为,并计算出三边边长,并利用锐角三角函数计算出的正弦值,即可得出答案.【题目详解】(1)证明:,平面,平面,平面.同理可证平面.,平面平面.平面,平面;(2)作于点,连接,平面,平面,.又,,平面.则为与平面所成角,在中,,,,,,,,,,因此,直线与平面所成角的正弦值为.【题目点拨】本题考查直线与平面平行的证明,同时也考查了直线与平面所成角的计算,在计算空间角时要遵循“一作、二证、三计算”的原则来求解,考查逻辑推理能力,属于中等题.18、(1);(2)【解题分析】

(1)由向量垂直的坐标运算可得,再求解即可;(2)利用三角函数诱导公式可得原式,再构造齐次式求解即可.【题目详解】解:(1)因为,所以,因为,,所以,即,故.(2).【题目点拨】本题考查了向量垂直的坐标运算,重点考查了三角函数诱导公式及构造齐次式求值,属中档题.19、(1);(2).【解题分析】

(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,进而可求A的值.(2)在△ADC中,由正弦定理可得,可得,利用三角形内角和定理可求,即可求得,再利用三角形的面积公式即可计算得解.【题目详解】(1)∵,∴由正弦定理可得:,∴可得:,可得:,∵,∴,可得:,∵,∴,∴,可得:.(2)∵,点D在边上,,∴在中,由正弦定理,可得:,可得:,∴,可得:,∴,∴,∴.【题目点拨】本题主要考查了正弦定理、三角函数恒等变换的应用,三角形内角和定理及三角形的面积公式在解三角形中的应用,考查了计算能力和转化能力,属于中档题.20、(1);(2)方案一概率为,方案二概率为.【解题分析】

(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【题目详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论