




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届来宾市重点中学数学高一下期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若()A. B. C. D.2.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.93.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.4.为了得到函数的图像,可以将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位5.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.6.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.47.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.8.在中,角A、B、C所对的边分别为a、b、c,若a、b、c成等比数列,且,则()A. B. C. D.9.已知集合,则()A. B. C. D.10.已知集合A=-1,A.-1, 0, 1二、填空题:本大题共6小题,每小题5分,共30分。11.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.12.求的值为________.13.若等差数列和等比数列满足,,则_______.14.在三棱锥中,,,,作交于,则与平面所成角的正弦值是________.15.如图,在中,已知点在边上,,,则的长为____________.16.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若,且,求实数的值;(2)若,且与的夹角为,求实数的值.18.2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.19.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付元,没有奖金;第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的倍.(1)工作天,记三种付费方式薪酬总金额依次为、、,写出、、关于的表达式;(2)该学生在暑假期间共工作天,他会选择哪种付酬方式?20.已知函数f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函数f(x)的值域及最小正周期;(2)如图,在四边形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面积S△ABC.21.如图,在四边形中,,,,.(1)若,求;(2)求四边形面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.2、C【解题分析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【题目详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【题目点拨】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.3、A【解题分析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【题目详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【题目点拨】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.4、D【解题分析】
根据三角函数的图象平移的原则,即左加右减,即可得答案.【题目详解】由,可以将函数图象向左平移个长度单位即可,故选:D.【题目点拨】本题考查三角函数的平移变换,求解时注意平移变换是针对自变量而言的,同时要注意是由谁变换到谁.5、C【解题分析】
比较与时不等式左边的项,即可得到结果【题目详解】因此不等式左边为,选C.【题目点拨】本题考查数学归纳法,考查基本分析判断能力,属基础题6、D【解题分析】
直接利用正弦定理得到,带入化简得到答案.【题目详解】正弦定理:即:故选D【题目点拨】本题考查了正弦定理,意在考查学生的计算能力.7、D【解题分析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【题目详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【题目点拨】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.8、A【解题分析】
先由a、b、c成等比数列,得到,再由题中条件,结合余弦定理,即可求出结果.【题目详解】解:a、b、c成等比数列,所以,所以,由余弦定理可知,又,所以.故选A.【题目点拨】本题主要考查解三角形,熟记余弦定理即可,属于常考题型.9、A【解题分析】
由,得,然后根据集合的交集运算,即可得到本题答案.【题目详解】因为,所以.故选:A【题目点拨】本题主要考查集合的交集运算及对数不等式.10、B【解题分析】
直接利用交集运算得到答案.【题目详解】因为A=-1, 故答案选B【题目点拨】本题考查了交集运算,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【题目详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【题目点拨】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求12、44.5【解题分析】
通过诱导公式,得出,依此类推,得出原式的值.【题目详解】,,同理,,故答案为44.5.【题目点拨】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.13、【解题分析】
设等差数列的公差为,等比数列的公比为,根据题中条件求出、的值,进而求出和的值,由此可得出的值.【题目详解】设等差数列的公差和等比数列的公比分别为和,则,求得,,那么,故答案为.【考点】等差数列和等比数列【题目点拨】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.14、【解题分析】
取中点,中点,易得面,再求出到平面的距离,进而求解再得出到平面的距离.从而算得与平面所成角的正弦值即可.【题目详解】如图,取中点,中点,连接.因为,,所以.因为,,所以.在中,余弦定理可得.在中,余弦定理可得,故.在中,,且面.故到面的距离.到面的距离.又因为,所以,所以,所以,故到面的距离.故与平面所成角的正弦值是故答案为:【题目点拨】本题主要考查了空间中线面垂直的性质与运用,同时也考查了余弦定理在三角形中求线段与角度正余弦值的方法,需要根据题意找到点到面的距离求解,再求出线面的夹角.属于难题.15、【解题分析】
由诱导公式可知,在中用余弦定理可得BD的长。【题目详解】由题得,,在中,可得,又,代入得,解得.故答案为:【题目点拨】本题考查余弦定理和诱导公式,是基础题。16、【解题分析】
如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据平面向量加法和数乘的坐标表示公式、数量积的坐标表示公式,结合两个互相垂直的平面向量数量积为零,进行求解即可;(2)利用平面向量夹角公式进行求解即可.【题目详解】(1)当时,.因为,所以;(2)当时,所以有,因为与的夹角为,所以有.【题目点拨】本题考查了平面向量运算的坐标表示公式,考查了平面向量夹角公式,考查了数学运算能力.18、(1)化学平均数30.2;中位数26;生物平均数29.6;中位数31;(2)见解析【解题分析】
(1)直接利用平均数的公式和中位数的定义计算化学、生物两个学科10次联考的百分比排名的平均数和中位数;(2)从平均数或中位数的角度出发帮助小明选择.【题目详解】解:(1)化学学科全市百分比排名的平均数,化学学科联考百分比排名的中位数为.生物学科联考百分比排名的平均数,生物学科联考百分比排名的中位数为.(2)从平均数来看,小明的生物学科比化学学科百分比排名靠前,应选生物.或者:从中位数来看,小明的化学学科比生物学科百分比排名靠前,应选化学.【题目点拨】本题主要考查平均数的计算和中位数的计算,考查平均数和中位数的意义,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1),,;(2)第三种,理由见解析.【解题分析】
(1)三种支付方式每天支付的金额依次为数列、、,可知数列为常数数列,数列是以为首项,以为公差的等差数列,数列是以为首项,以为公比的等比数列,利用等差数列和等比数列求和公式可计算出、、关于的表达式;(2)利用(1)中的结论,计算出、、的值,比较大小后可得出结论.【题目详解】(1)设三种支付方式每天支付的金额依次为数列、、,它们的前项和分别为、、,第一种付酬方式每天所付金额组成数列为常数列,且,所以;第二种付酬方式每天所付金额组成数列是以为首项,以为公差的等差数列,所以;第三种付酬方式每天所付金额组成数列是以为首项,以为公比的等比数列,所以;(2)由(1)知,当时,,,,则.因此,该学生在暑假期间共工作天,选第三种付酬方式较好.【题目点拨】本题考查等差数列和等比数列的应用,涉及等差数列和等比数列求和公式的应用,考查计算能力,属于中等题.20、(1)值域为[﹣3,1],最小正周期为π;(2).【解题分析】
(1)化简f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面积S△ABC.【题目详解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函数f(x)的值域为[﹣3,1]最小正周期为π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD•ABcosA⇒,解得ABcos,则sin∠ABC=cos.△ABC的面积S△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 寰枕融合的临床护理
- 《2025知识产权许可协议技术合同》
- 《临床护理操作技术》课件
- 生地会考试卷及答案万维
- 上海高一期中试卷及答案
- 山东期中考试试卷及答案
- 深海打捞装备的作业效能评估体系考核试卷
- 硬盘分区与数据恢复考核试卷
- 玩具工厂智能化升级考核试卷
- 玩具设计中的创意原型制作考核试卷
- 锅炉安装安全管理制度
- 液压安全知识培训课件
- 工贸企业综合应急预案
- 中国安全生产中介服务市场深度调研分析及投资前景研究预测报告
- 运输考试试题及答案
- 2025年交通事故经济赔偿协议书模板
- 履带高空作业车施工方案
- 儿童心理学常识题单选题100道及答案
- DB32/T 3278-2017 油菜耐盐性鉴定及评价技术规程
- 2024年中国酸奶乳品市场调查研究报告
- 环水保培训课件
评论
0/150
提交评论