




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届商丘名校数学高一下期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等2.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.3.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.484.定义运算为执行如图所示的程序框图输出的值,则式子的值是A.-1 B.C. D.5.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为()A. B. C. D.6.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.247.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=08.已知,且,则下列不等式正确的是()A. B. C. D.9.数列中,若,则下列命题中真命题个数是()(1)若数列为常数数列,则;(2)若,数列都是单调递增数列;(3)若,任取中的项构成数列的子数(),则都是单调数列.A.个 B.个 C.个 D.个10.在数列中,,,则的值为:A.52 B.51 C.50 D.49二、填空题:本大题共6小题,每小题5分,共30分。11.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为12.若,则_______.13.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________14.执行如图所示的程序框图,则输出的结果为__________.15.已知,则与的夹角等于___________.16.设为正偶数,,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.18.设向量,,其中.(1)若,求的值;(2)若,求的值.19.如图,在平面四边形中,已知,,在上取点,使得,连接,若,。(1)求的值;(2)求的长。20.已知和的交点为.(1)求经过点且与直线垂直的直线的方程(2)直线经过点与轴、轴交于、两点,且为线段的中点,求的面积.21.已知函数.(1)用五点法作图,填表井作出的图像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【题目详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【题目点拨】本题考查了椭圆的几何性质,属于基础题型.2、B【解题分析】
可先确定奇偶性,再确定单调性.【题目详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【题目点拨】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.3、C【解题分析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.4、D【解题分析】
由已知的程序框图可知,本程序的功能是:计算并输出分段函数的值,由此计算可得结论.【题目详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数的值,可得,因为,所以,,故选D.【题目点拨】本题主要考查条件语句以及算法的应用,属于中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.5、C【解题分析】
有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,由此能求出从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率.【题目详解】有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作216个,由正方体的结构及锯木块的方法,可知一面带有红漆的木块是每个面的中间那16块,共有6×16=96个,∴从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率:p.故选C.【题目点拨】本题考查概率的求法,考查古典概型、正方体的结构特征等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.6、D【解题分析】由等差数列的性质可得,则,故选D.7、A【解题分析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.8、B【解题分析】
通过反例可排除;根据的单调性可知正确.【题目详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【题目点拨】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.9、C【解题分析】
对(1),由数列为常数数列,则,解方程可得的值;对(2),由函数,,求得导数和极值,可判断单调性;对(3),由,判断奇偶性和单调性,结合正弦函数的单调性,即可得到结论.【题目详解】数列中,若,,,(1)若数列为常数数列,则,解得或,故(1)不正确;(2)若,,,由函数,,,由,可得极值点唯一且为,极值为,由,可得,则,即有.由于,,由正弦函数的单调性,可得,则数列都是单调递增数列,故(2)正确;(3)若,任取中的9项,,,,,构成数列的子数列,,2,,9,是单调递增数列;由,可得,为奇函数;当时,,时,;当时,;时,,运用正弦函数的单调性可得或时,数列单调递增;或时,数列单调递减.所以数列都是单调数列,故(3)正确;故选:C.【题目点拨】本题考查数列的单调性的判断和运用,考查正弦函数的单调性,以及分类讨论思想方法,属于难题.10、A【解题分析】
由,得到,进而得到数列首项为2,公差为的等差数列,利用等差数列的通项公式,即可求解,得到答案.【题目详解】由题意,数列满足,即,又由,所以数列首项为2,公差为的等差数列,所以,故选A.【题目点拨】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,其中解答中熟记等差数列的定义,以及等差数列的通项公式是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
试题分析:根据题意,设塔高为x,则可知,a表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.12、【解题分析】
对两边平方整理即可得解.【题目详解】由可得:,整理得:所以【题目点拨】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.13、2【解题分析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【题目详解】由余弦定理得,即,解得或(舍去).故填2.【题目点拨】本题主要考查了利用余弦定理求三角形的边,属于中档题.14、1【解题分析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】模拟程序的运行,可得
S=1,i=1
满足条件S<40,执行循环体,S=3,i=2
满足条件S<40,执行循环体,S=7,i=3
满足条件S<40,执行循环体,S=15,i=4
满足条件S<40,执行循环体,S=31,i=5
满足条件S<40,执行循环体,S=13,i=1
此时,不满足条件S<40,退出循环,输出i的值为1.
故答案为:1.【题目点拨】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15、【解题分析】
利用再结合已知条件即可求解【题目详解】由,即,故答案为:【题目点拨】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题16、【解题分析】
得出的表达式,然后可计算出的表达式.【题目详解】,,因此,.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查项的变化,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【题目详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【题目点拨】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.18、(1);(2)【解题分析】
(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【题目详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【题目点拨】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.19、(1);(2).【解题分析】试题分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.试题解析:(1)在中,据正弦定理,有.∵,,,∴.(2)由平面几何知识,可知,在中,∵,,∴.∴.在中,据余弦定理,有∴点睛:此题考查了正弦定理、余弦定理的应用,利用正弦、余弦定理可以很好得解决了三角形的边角关系,熟练掌握定理是解本题的关键.在中,涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.20、(1);(2)2【解题分析】
(1)联立两条直线的方程,解方程组求得点坐标,根据的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中点的坐标以及为中点这一条件,求得两点的坐标,进而求得三角形的面积.【题目详解】解:(1)联立,解得交点的坐标为,∵与垂直,∴的斜率,∴的方程为,即.(2)∵为的中点,已知,,即,∴【题目点拨】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.21、(1)见解析;(2)时,,时,;(3).【解题分析】
(1)当时,求出相应的x,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 支出审批管理办法
- 旅游信息管理办法
- 收发货物管理办法
- 林木种苗管理办法
- 押解人员管理办法
- 快递临时管理办法
- 投资税务管理办法
- 来华留学管理办法
- 政府轮岗管理办法
- 国际禁毒日禁毒教育课件26
- 精神科常用量表应
- 牛津版沪教版英语八年级(上)Unit 1 Encyclopaedias 语法讲解练习答案
- 2022年河南洛阳栾川县人民医院医共体专业招聘笔试备考题库及答案解析
- 华东师大版七年级数学下册单元测试题及答案
- YY/T 1819-2022牙科学正畸矫治器用膜片
- GB/T 3091-2015低压流体输送用焊接钢管
- GB/T 21781-2008化学品的熔点及熔融范围试验方法毛细管法
- 德力ds2100误码率场强仪使用说明书
- MCGS脚本驱动开发工具使用指导手册
- 微型营养评估(MNA)记录表
- 35kV输电线路工程旋挖钻孔专项施工方案
评论
0/150
提交评论