版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东莞市重点中学2024届高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.2.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.53.设变量满足约束条件,则目标函数的最大值是()A.7 B.5 C.3 D.24.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π5.函数的图象大致为()A. B. C. D.6.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.7.在中,角的对边分别为,若,则形状是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形8.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.9.已知直线,若,则的值为()A.8 B.2 C. D.-210.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.12.空间两点,间的距离为_____.13.两等差数列{an}和{bn}前n项和分别为Sn,Tn,且,则=__________.14.关于的方程()的两虚根为、,且,则实数的值是________.15.已知函数的图象如图所示,则不等式的解集为______.16.已知向量,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知是半径为1,圆心角为的扇形,是扇形狐上的动点,点分别在半径上,且是平行四边形,记,四边形的面积为,问当取何值时,最大?的最大值是多少?18.若x,y为正实数,求证:,并说明等号成立的条件.19.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.20.中,角A,B,C所对边分别是a、b、c,且.(1)求的值;(2)若,求面积的最大值.21.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【题目详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【题目点拨】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.2、D【解题分析】
用等比数列的性质求解.【题目详解】∵是等比数列,∴,∴.故选D.【题目点拨】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.3、B【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【题目详解】画出约束条件,表示的可行域,如图,由可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最大,最大值为,故选B.【题目点拨】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4、D【解题分析】试题分析:∵2a考点:正弦定理解三角形5、C【解题分析】
利用函数的性质逐个排除即可求解.【题目详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【题目点拨】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.6、D【解题分析】
求出A关于直线l:的对称点为C,则BC即为所求【题目详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【题目点拨】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.7、D【解题分析】
由,利用正弦定理化简可得sin2A=sin2B,由此可得结论.【题目详解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状是等腰三角形或直角三角形故选D.【题目点拨】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.8、B【解题分析】
利用三角函数的平移和伸缩变换的规律求出即可.【题目详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【题目点拨】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.9、D【解题分析】
根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.10、A【解题分析】试题分析:由斜二测画法的规则知与x'轴平行或重合的线段与x’轴平行或重合,其长度不变,与y轴平行或重合的线段与x’轴平行或重合,其长度变成原来的一半,正方形的对角线在y'轴上,可求得其长度为,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2,观察四个选项,A选项符合题意.故应选A.考点:斜二测画法.点评:注意斜二测画法中线段长度的变化.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【题目详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【题目点拨】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.12、【解题分析】
根据空间中两点间的距离公式即可得到答案【题目详解】由空间中两点间的距离公式可得;;故距离为3【题目点拨】本题考查空间中两点间的距离公式,属于基础题。13、【解题分析】数列{an}和{bn}为等差数列,所以.点睛:等差数列的常考性质:{an}是等差数列,若m+n=p+q,则.14、5【解题分析】
关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【题目详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【题目点拨】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.15、【解题分析】
根据函数图象以及不等式的等价关系即可.【题目详解】解:不等式等价为或,
则,或,
故不等式的解集是.
故答案为:.【题目点拨】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.16、【解题分析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【题目详解】由题意得,.,.,,.故答案为:.【题目点拨】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当时,最大,最大值为【解题分析】
设,,在中,由余弦定理,基本不等式可得,根据三角形的面积公式即可求解.【题目详解】解:设,在中,由余弦定理得:,由基本不等式,,可得,当且仅当时取等号,∴,当且仅当时取等号,此时,∴当时,最大,最大值为.【题目点拨】本题主要考查余弦定理,基本不等式,三角形的面积公式的综合应用,考查了计算能力和转化思想,属于基础题.18、当且仅当时取等号,证明见解析【解题分析】
由题意,.【题目详解】由题意,可得:,当且仅当时取等号,又,当且仅当时取等号,联立解得,故,当且仅当时取等号.【题目点拨】本题考查了基本不等式的运用,考查了不等式的证明,属于中档题.19、(1);(2)2【解题分析】
(1)根据向量的数量积定义,结合余弦的倍角公式,即可求得;(2)由余弦定理,及(1)中所求角度,即可直接求得.【题目详解】(1)由已知易得:所以,又故.(2)由及余弦定理可得:所以,所以得:(舍)所以.【题目点拨】本题考查余弦定理,余弦的倍角公式,涉及向量的数量积,属基础题.20、(1);(2)【解题分析】
(1)将化简代入数据得到答案.(2)利用余弦定理和均值不等式计算,代入面积公式得到答案.【题目详解】;(2)由,可得,由余弦定理可得,即有,当且仅当,取得等号.则面积为.即有时,的面积取得最大值.【题目点拨】本题考查了三角恒等变换,余弦定理,面积公式,均值不等式,属于常考题型.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丑小鸭课程设计
- 比例导引 课程设计
- 消除性别暴力的课程设计
- 电子密码锁 课程设计
- 2024年电子商务平台推广与分成合同
- 爬虫课程设计答辩
- 招聘与甄选课程设计
- 电子课程设计拔河
- 环境空间课程设计
- 2024年国有企业员工薪酬绩效与职业发展合同3篇
- 河北省邯郸市2023-2024学年高一上学期期末质量检测地理试题 附答案
- 环境、健康、安全施工管理体系及职责
- 2024年度物业管理公司员工奖惩制度3篇
- 湖南省雅礼教育集团2023-2024学年高二上学期期末英语试卷 含解析
- 2024年7月国家开放大学法学本科《知识产权法》期末考试试题及答案
- 北京市西城区2022-2023学年六年级上学期数学期末试卷(含答案)
- 2024秋期国家开放大学本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 2024智能变电站新一代集控站设备监控系统技术规范部分
- 抵押贷款行业可行性分析报告
- MOOC 微观经济学-浙江大学 中国大学慕课答案
- 四年级上册道法知识点汇总
评论
0/150
提交评论