




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省商洛市高一数学第二学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.2.直线在轴上的截距为()A.2 B.﹣3 C.﹣2 D.33.过点且与直线垂直的直线方程是()A. B. C. D.4.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc25.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B. C. D.6.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=07.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°8.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°9.等比数列的前n项和为,且,,成等差数列.若,则()A.15 B.7 C.8 D.1610.若直线与直线平行,则的值为()A.1 B.﹣1 C.±1 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;12.已知扇形的半径为6,圆心角为,则扇形的弧长为______.13.函数的反函数为__________.14.中,,,,则______.15.在等差数列中,已知,,则________.16.已知,,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求;(2)求的值.18.某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)怎样安排生产可使所得利润最大?19.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?参考公式:回归直线的方程,其中,.20.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.21.如图为函数f(x)=Asin(Ⅰ)求函数f(x)=Asin(Ⅱ)若x∈0,π2时,函数y=
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【题目详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【题目点拨】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.2、B【解题分析】
令,求出值则是截距。【题目详解】直线方程化为斜截式为:,时,,所以,在轴上的截距为-3。【题目点拨】轴上的截距:即令,求出值;同理轴上的截距:即令,求出值3、D【解题分析】
由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【题目详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【题目点拨】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.4、C【解题分析】
根据a、b的范围,取特殊值带入判断即可.【题目详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【题目点拨】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.5、C【解题分析】
如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选C.6、D【解题分析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【题目详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.7、B【解题分析】
根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【题目详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【题目点拨】本题考查斜率和倾斜角的关系,是基础题.8、B【解题分析】
直接利用正弦定理计算得到答案.【题目详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【题目点拨】本题考查了正弦定理解三角形,意在考查学生的计算能力.9、B【解题分析】
通过,,成等差数列,计算出,再计算【题目详解】等比数列的前n项和为,且,,成等差数列即故答案选B【题目点拨】本题考查了等比数列通项公式,等差中项,前N项和,属于常考题型.10、B【解题分析】
两直线平行表示斜率相同或者都垂直x轴,即。【题目详解】当时,两直线分别为:与直线,不平行,当时,直线化为:直线化为:,两直线平行,所以,,解得:,当时,两直线重合,不符,所以,【题目点拨】直线平行即表示斜率相同,且截距不同,如果截距相同则表示同一条直线。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【题目详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【题目点拨】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.12、【解题分析】
先将角度化为弧度,再根据弧长公式求解.【题目详解】因为圆心角,所以弧长.故答案为:【题目点拨】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.13、【解题分析】
由得,即,把与互换即可得出【题目详解】由得所以把与互换,可得故答案为:【题目点拨】本题考查的是反函数的求法,较简单.14、【解题分析】
根据,得到的值,再由余弦定理,得到的值.【题目详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【题目点拨】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.15、-16【解题分析】
设等差数列的公差为,利用通项公式求出即可.【题目详解】设等差数列的公差为,得,则.故答案为【题目点拨】本题考查了等差数列通项公式的应用,属于基础题.16、【解题分析】
根据已知角的范围分别求出,,利用整体代换即可求解.【题目详解】,,,所以,,,,所以,=故答案为:【题目点拨】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据三角函数的基本关系式,可得,再结合正切的倍角公式,即可求解;(2)由(1)知,结合三角函数的基本关系式,即可求解,得到答案.【题目详解】(1)由,根据三角函数的基本关系式,可得,所以.(2)由(1)知,又由.【题目点拨】本题主要考查了三角函数的基本关系式和正切的倍角公式的化简求值,其中解答中熟记三角函数的基本关系式和三角恒等变换的公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.18、(1)只安排生产书桌,最多可生产300张书桌,获得利润24000元;(2)生产书桌100张、书橱400个,可使所得利润最大【解题分析】
(1)设只生产书桌x个,可获得利润z元,则,由此可得最大值;(2)设生产书桌x张,书橱y个,利润总额为z元.则,,由线性规划知识可求得的最大值.即作可行域,作直线,平移此直线得最优解.【题目详解】由题意可画表格如下:方木料()五合板()利润(元)书桌(个)0.1280书橱(个)0.21120(1)设只生产书桌x个,可获得利润z元,则,∴∴所以当时,(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元(2)设生产书桌x张,书橱y个,利润总额为z元.则,∴在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域作直线,即直线.把直线l向右上方平移至的位置时,直线经过可行域上的点M,此时取得最大值由解得点M的坐标为.∴当,时,(元).因此,生产书桌100张、书橱400个,可使所得利润最大所以当,时,.因此,生产书桌100张、书橱400个,可使所得利润最大.【题目点拨】本题考查简单的线性规划的实际应用,解题时需根据已知条件设出变量,列出二元一次不等式组表示的约束条件,列出目标函数,然后由解决线性规划的方法求最优解.19、(1)(2)该协会所得线性回归方程是理想的【解题分析】试题分析:(1)根据所给的数据求出x,y的平均数,根据求线性回归系数的方法,求出系数,把和,代入公式,求出的值,写出线性回归方程;(2)根据所求的线性回归方程,预报当自变量为10和6时的值,把预报的值同原来表中所给的10和6对应的值作差,差的绝对值不超过2,得到线性回归方程理想.试题解析:解:(Ⅰ)由数据求得,,,由公式求得,所以,所以关于的线性回归方程为.(Ⅱ)当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.点睛:求线性回归方程的步骤:(1)先把数据制成表,从表中计算出的值;(2)计算回归系数;(3)写出线性回归方程.进行线性回归分析时,要先画出散点图确定两变量具有线性相关关系,然后利用公式求回归系数,得到回归直线方程,最后再进行有关的线性分析.20、(1);(2).【解题分析】
(1)利用坐标运算表示出与;根据向量垂直可知数量积为零,从而构造方程求得结果;(2)利用坐标运算表示出,根据三点共线可知,根据向量共线的坐标表示可构造方程求得结果.【题目详解】(1),与垂直,解得:(2)三点共线,,解得:【题目点拨】本题考查平面向量的坐标运算,涉及到向量平行和垂直的坐标表示;关键是能够明确两向量垂直则数量积等于零,能够利用平行关系表示三点共线.21、(Ⅰ)f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老公坐牢协议书
- 炒货机闲置转让协议书
- 租金分配协议书
- 财产质押协议书
- 英皇文化协议书
- 股权待持协议书
- 北京市劳动合同协议书
- 退伙退股协议书
- 学校招厨师合同协议书
- 均质机出售转让协议书
- 制作标书流程培训
- 工程造价咨询服务投标方案(专家团队版-)
- 人员考核协议书(2篇)
- 人格与精神障碍-学做自己的心理医生-暨南大学2中国大学mooc课后章节答案期末考试题库2023年
- 人力资源规划复盘
- 2025届苏教版高考仿真模拟英语试卷含解析
- 中建道路起重吊装施工方案
- 《产业政策》课件
- 第8课人工智能中的算法 说课稿 2023-2024学年浙教版(2023)初中信息技术八年级下册
- DB11T 745-2010 住宅采暖室内空气温度测量方法
- 小班班本课程《吃饭这件小事》
评论
0/150
提交评论