版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市联盛中学2024届高一数学第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设数列是公差不为零的等差数列,它的前项和为,且、、成等比数列,则等于()A. B. C. D.2.已知平行四边形对角线与交于点,设,,则()A. B. C. D.3.已知全集,集合,,则为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}4.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛5.圆和圆的公切线条数为()A.1 B.2 C.3 D.46.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.7.设,是两个不同的平面,a,b是两条不同的直线,给出下列四个命题,正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则8.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.9.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知是公差不为零的等差数列,其前项和为,若成等比数列,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______12.若集合,,则集合________.13.设点是角终边上一点,若,则=____.14.若在等比数列中,,则__________.15.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.16.在正项等比数列中,,,则公比________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角三角形中,内角的对边分别为且.(1)求角的大小;(2)若,,求△的面积.18.已知.(1)求实数的值;(2)若,求实数的值.19.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)直线与平面所成角的正切值;(2)三棱锥的体积.20.近年来,石家庄经济快速发展,跻身新三线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,石家庄的交通优势在同级别的城市内无能出其右.为了调查石家庄市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(1)求,的值;(2)求被调查的市民的满意程度的平均数,中位数(保留小数点后两位),众数;(3)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.21.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
设等差数列的公差为,根据得出与的等量关系,即可计算出的值.【题目详解】设等差数列的公差为,由于、、成等比数列,则有,所以,,化简得,因此,.故选:A.【题目点拨】本题考查等差数列前项和中基本量的计算,解题的关键就是结合题意得出首项与公差的等量关系,考查计算能力,属于基础题.2、B【解题分析】
根据向量减法的三角形法则和数乘运算直接可得结果.【题目详解】本题正确选项:【题目点拨】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.3、C【解题分析】
先根据全集U求出集合A的补集,再求与集合B的并集.【题目详解】由题得,故选C.【题目点拨】本题考查集合的运算,属于基础题.4、D【解题分析】
由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【题目详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【题目点拨】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.5、B【解题分析】
判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【题目详解】圆的标准方程为,圆心坐标为,半径长为.圆的标准方程为,圆心坐标为,半径长为.圆心距为,由于,即,所以,两圆相交,公切线的条数为,故选B.【题目点拨】本题考查两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离条公切线;②两圆外切条公切线;③两圆相交条公切线;④两圆内切条公切线;⑤两圆内含没有公切线.6、B【解题分析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【题目详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.7、C【解题分析】
利用线面、面面之间的位置关系逐一判断即可.【题目详解】对于A,若,,则平行、相交、异面均有可能,故A不正确;对于B,若,,,则垂直、平行均有可能,故B不正确;对于C,若,,,根据线面垂直的定义可知内的两条相交线线与内的两条相交线平行,故,故C正确;对于D,由C可知,D不正确;故选:C【题目点拨】本题考查了由线面平行、线面垂直判断线面、线线、面面之间的位置关系,属于基础题.8、C【解题分析】
方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【题目详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【题目点拨】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.9、D【解题分析】
根据线面垂直与平行的性质与判定分析或举出反例即可.【题目详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【题目点拨】本题主要考查了空间中平行垂直的判定与性质,属于中档题.10、B【解题分析】∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
由题得函数的周期为解之即得解.【题目详解】由题得函数的周期为.故答案为1【题目点拨】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、【解题分析】由题意,得,,则.13、【解题分析】
根据任意角三角函数的定义,列方程求出m的值.【题目详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【题目点拨】本题考查了任意角三角函数的定义与应用问题,属于基础题.14、【解题分析】
根据等比中项的性质,将等式化成即可求得答案.【题目详解】是等比数列,若,则.因为,所以,.故答案为:1.【题目点拨】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.15、或【解题分析】
设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【题目详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【题目点拨】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.16、【解题分析】
利用等比中项可求出,再由可求出公比.【题目详解】因为,,所以,,解得.【题目点拨】本题考查了等比数列的性质,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用正弦定理及,便可求出,得到的大小;(2)利用(1)中所求的大小,结合余弦定理求出的值,最后再用三角形面积公式求出值.【题目详解】(1)由及正弦定理,得.因为为锐角,所以.(2)由余弦定理,得,又,所以,所以.考点:正余弦定理的综合应用及面积公式.18、(1);(2).【解题分析】试题分析:(1)利用向量,建立关于的方程,即可求解的值;(2)写出向量的坐标,利用得出关于的方程,即可求解实数的值.试题解析:(1)(2)由(1)得所以考点:向量的坐标运算.19、(1);(2)【解题分析】
(1)要求直线与平面所成角的正切值,先要找到直线在平面上的射影,即在直线上找一点作平面的垂线,结合已知与图形,转化为证明平面再求解;(2)三棱锥的体积计算在于选取合适的底和高,此题以为底,与的中点的连线为高计算更为快速,从而转化为证明平面再求解.【题目详解】(1)平面,平面又,,平面,平面所以平面,所以为直线与平面所成角。易证是一个直角三角形,所以.(2)如图,设的中点为,则,平面,平面,又,,,又,,,所以平面,所以为三棱锥的高.因此可求【题目点拨】本题主要考察线面角与三棱锥体积的计算.线面角的关键在于找出直线在平面上的射影,一般转化为直线与平面的垂直;三棱锥体积的计算主要在于选择合适的底和高.20、(1),;(2)平均数约为,中位数约为,众数约为75;(3).【解题分析】
(1)根据题目频率分布直方图频率之和为1,已知其中,可得答案;(2)利用矩形的面积等于频率为0.5可估算中位数所在的区间,利用估算中位数定义,矩形最高组估算纵数可得答案;(3)利用古典概型的概率计算公式求解即可.【题目详解】解:研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如图的频率分布直方图,其中,(1),其中,解得:,;(2)随机抽取了1000名市民进行调查,则估计被调查的市民的满意程度的平均数:,由题中位数在70到80区间组,,,中位数:,众数:75,故平均数约为,中位数约为,众数约为75;(3)若按照分层抽样从,,,中随机抽取8人,则,共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八项规定手写承诺书范本
- 手足口病防控培训课件
- 2025-2030全球等离子处理设备行业调研及趋势分析报告
- 2025-2030全球医用无纺布电极片行业调研及趋势分析报告
- 2025-2030全球锂电池用隔膜行业调研及趋势分析报告
- 2025年全球及中国发泡奶精行业头部企业市场占有率及排名调研报告
- 2025-2030全球卫星锂离子电池行业调研及趋势分析报告
- 门窗定制合同范本
- 汽车烤漆房租赁合同
- 冷冻油采购合同
- 房地产调控政策解读
- 产前诊断室护理工作总结
- 2024-2025学年八年级数学人教版上册寒假作业(综合复习能力提升篇)(含答案)
- 《AP内容介绍》课件
- 医生定期考核简易程序述职报告范文(10篇)
- 市政工程人员绩效考核制度
- 公园景区安全生产
- 安全创新创效
- 《中国糖尿病防治指南(2024版)》更新要点解读
- 初级创伤救治课件
- 2024年社会工作者(中级)-社会综合能力考试历年真题可打印
评论
0/150
提交评论