版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省墨江第二中学2024届数学高一第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为()A. B. C. D.2.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则()A. B. C. D.3.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.4.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或75.函数f(x)=sinA.1 B.2 C.3 D.26.在△ABC中,AC,BC=1,∠B=45°,则∠A=()A.30° B.60° C.30°或150° D.60°或120°7.已知点,则向量在方向上的投影为()A. B. C. D.8.若直线过点,则此直线的倾斜角是()A. B. C. D.90。9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.1210.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π二、填空题:本大题共6小题,每小题5分,共30分。11.在中,两直角边和斜边分别为a,b,c,若则实数x的取值范围是________.12.函数在的值域是__________________.13.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.14.已知,,那么的值是________.15.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.16.设公差不为零的等差数列的前项和为,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?18.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.19.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.20.若,解关于的不等式.21.学生会有共名同学,其中名男生名女生,现从中随机选出名代表发言.求:同学被选中的概率;至少有名女同学被选中的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【题目详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【题目点拨】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.2、C【解题分析】
利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解.【题目详解】因为角的终边过点,所以点到原点的距离所以,所以故选C【题目点拨】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题.3、B【解题分析】
由正弦定理可得3sinBsinA=4sin【题目详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【题目点拨】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.4、A【解题分析】
根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【题目详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【题目点拨】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.5、A【解题分析】
对sin(x+π3【题目详解】∵f(x)=sin∴f(x)【题目点拨】考查三角恒等变换、辅助角公式及余弦函数的最值.6、A【解题分析】
直接利用正弦定理求出sinA的大小,根据大边对大角可求A为锐角,即可得解A的值.【题目详解】因为:△ABC中,BC=1,AC,∠B=45°,所以:,sinA.因为:BC<AC,可得:A为锐角,所以:A=30°.故选:A.【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.7、A【解题分析】
,,向量在方向上的投影为,故选A.8、A【解题分析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【题目详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【题目点拨】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.9、C【解题分析】
由开始,按照框图,依次求出s,进行判断。【题目详解】,故选C.【题目点拨】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。10、B【解题分析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【题目详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
计算得到,根据得到范围.【题目详解】两直角边和斜边分别为a,b,c,则,则,则,故.故答案为:.【题目点拨】本题考查了正弦定理和三角函数的综合应用,意在考查学生的综合应用能力.12、【解题分析】
利用反三角函数的性质及,可得答案.【题目详解】解:,且,,∴,故答案为:【题目点拨】本题主要考查反三角函数的性质,相对简单.13、1【解题分析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.14、【解题分析】
首先根据题中条件求出角,然后代入即可.【题目详解】由题知,,所以,故.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题.15、{m|-1<m≤1或m=-}【解题分析】
由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【题目详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【题目点拨】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.16、【解题分析】
设出数列的首项和公差,根据等差数列通项公式和前项和公式,代入条件化简得和的关系,再代入所求的式子进行化简求值.【题目详解】解:设等差数列的首项为,公差为,由,得,得,.故答案为:【题目点拨】本题考查了等差数列通项公式和前n项和公式的简单应用,属于基础.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【题目详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【题目点拨】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.18、(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)【解题分析】
(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出.【题目详解】(1)由频率分布直方图得,这20个交通路段中,轻度拥堵的路段有(0.1+0.2)×1×20=6(个),中度拥堵的路段有(0.25+0.2)×1×20=9(个),严重拥堵的路段有(0.1+0.05)×1×20=3(个).(2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为,,,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1.(3)记抽取的2个轻度拥堵路段为,,抽取的3个中度拥堵路段为,,,抽取的1个严重拥堵路段为,则从这6个路段中抽取2个路段的所有可能情况为:,共15种,其中至少有1个路段为轻度拥堵的情况为:,共9种.所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为.【题目点拨】本题考查了频率直方图的应用、分层抽样、古典概型概率的求法.解决本题的关键是对频率直方图所表示的意义要了解,分层抽样的原则要知道,要能识别古典概型.19、(1),(2)递增区间为,(3)【解题分析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度广告公司与广告投放代理合同
- 2024年度食品加工与包装代加工合同
- 沥青砼运输合同模板
- 盈利美甲店入股合同模板
- 2024年度工厂整体搬迁服务合同
- 2024年度阅文集团图书出版合同
- 2024广告物料制作安装合同(长期)
- 二零二四年度租赁合同(含设备、房产、车辆)
- 玛雅房屋租赁合同(2024年版)
- 二零二四年建筑施工合同工程质量与安全标准
- 创意知名画家达芬奇个人生平介绍PPT
- 高三语文教学工作计划学情分析3篇
- 2022年物流公司组织架构图及部门职责
- 小学语文新课程标准最新版2022
- 模特面试登记表
- 餐饮业月度收入支出费用报表
- 小型割草机的设计
- 可随意编辑【封面+简历+自荐信】淡雅欧美花纹古典求职个人简历
- 部编版四年级上册语文第二十六课《西门豹治邺》课文原文及练习题
- 卫生院紫外线消毒登记表
- 2023江苏“小高考”(化学)(2023江苏省普通高中学业水平测试-化学)
评论
0/150
提交评论