版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市万载中学2024届高一数学第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若关于x的不等式的解集为,则()A. B. C.1 D.72.在等比数列中,则()A.81 B. C. D.2433.三棱锥则二面角的大小为()A. B. C. D.4.若,,且与夹角为,则()A.3 B. C.2 D.5.在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则()A.6 B.5 C.4 D.36.计算()A. B. C. D.7.某市家庭煤气的使用量和煤气费(元)满足关系,已知某家庭今年前三个月的煤气费如下表:月份用气量煤气费一月份元二月份元三月份元若四月份该家庭使用了的煤气,则其煤气费为()元A. B. C. D.8.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关9.设函数,若函数恰有两个零点,则实数的取值范围为()A. B. C. D.10.已知点,,则与向量方向相同的单位向量为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数x,y满足2x+y=2,则xy的最大值为______.12.若等差数列的前项和,且,则______________.13.在数列中,,,,则_____________.14.已知函数的部分图象如图所示,则的值为_________.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和为,求.18.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.19.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.20.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.21.数列中,,.前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由韦达定理列方程求出,即可得解.【题目详解】由已知及韦达定理可得,,,即,,所以.故选:.【题目点拨】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.2、A【解题分析】解:因为等比数列中,则,选A3、B【解题分析】
P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【题目详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【题目点拨】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.4、B【解题分析】
由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【题目详解】由题意若,,且与夹角为,可得,.故选:B.【题目点拨】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.5、D【解题分析】
由众数就是出现次数最多的数,可确定,题中中位数是中间两个数的平均数,这样可计算出.【题目详解】由甲组数据的众数为11,得,乙组数据中间两个数分别为6和,所以中位数是,得到,因此.故选:D.【题目点拨】本题考查众数和中位数的概念,掌握众数与中位数的定义是解题基础.6、A【解题分析】
根据对数运算,即可求得答案.【题目详解】故选:A.【题目点拨】本题主要考查了对数运算,解题关键是掌握对数运算基础知识,考查了计算能力,属于基础题.7、C【解题分析】由题意得:C=4,将(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20时:f(20)=4+(20﹣5)=11.5.故选:C.点睛:这是函数的实际应用题型,根据题目中的条件和已知点得到分段函数的未知量的值,首先得到函数表达式,再根据题意让求自变量为20时的函数值,求出即可。实际应用题型,一般是先根据题意构建模型,列出表达式,根据条件求解问题即可。8、C【解题分析】
根据增大时的变化趋势可确定结果.【题目详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【题目点拨】本题考查根据散点图判断相关关系的问题,属于基础题.9、A【解题分析】
首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【题目详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【题目点拨】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.10、A【解题分析】
由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【题目详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【题目点拨】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由基本不等式可得,可求出xy的最大值.【题目详解】因为,所以,故,当且仅当时,取等号.故答案为.【题目点拨】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.12、【解题分析】
设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【题目详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【题目点拨】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.13、5【解题分析】
利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【题目详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【题目点拨】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.14、【解题分析】
根据图像可得,根据0所在位置,处于函数的单调减区间,即可得解.【题目详解】由图可得:,或由于0在函数的单调减区间内,所以.故答案为:【题目点拨】此题考查根据三角函数的图象求参数的取值,常用代入法求解,判定初相的取值时,根据图象结合单调性取值.15、【解题分析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【题目详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【题目点拨】本题考查斜二测画法的规则,考查基本识图、作图能力.16、【解题分析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【题目详解】当时,符合,当时,符合,【题目点拨】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)数列的通项公式为(2)【解题分析】试题分析:(1)建立方程组;(2)由(1)得:进而由裂项相消法求得.试题解析:(1)设等差数列的公差为,由题意知解得.所以数列的通项公式为(2)∴18、(1),(2)递增区间为,(3)【解题分析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【题目详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【题目点拨】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,以及二次函数动轴定区间问题,属综合基础题.19、(1)见解析;(2);(3)存在,为中点.【解题分析】
(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【题目详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【题目点拨】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.20、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【题目详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【题目点拨】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.21、(1)(2)证明见详解.(3)能取整数,此时的取值集合为.【解题分析】
(1)利用递推关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024 年自建住宅租赁协议标准格式版B版
- 暨南大学《当代资本主义研究》2023-2024学年第一学期期末试卷
- 汽车改装技术 课件 6.4内饰塑料件喷漆改色认知
- 垃圾处理与资源化服务合同2024
- 2024年度建筑工程合同工程量清单2篇
- 酒店垃圾分类培训
- 腹腔穿刺术护理
- 谈论休闲活动英语
- 防火门品牌保护与维权服务合同(二零二四年版)3篇
- 施工现场综合应急预案
- XRF定性和定量分析ppt课件
- 超声振动切削报告
- 生产经营单位生产安全事故应急预案评审表
- 小学英语六年级上册先周单元主讲稿单元备课全册
- 小学生宪法知识主题班会PPT专题教学
- 运营高速公路风险评价报告
- 贝叶斯统计-习题答案)
- 1到13之内的24点全题及解(整理版
- 学校规章制度之语言文字规范化管理规章制度
- 饲料原料损耗的形成与控制
- 水利水电竣工结算书范例
评论
0/150
提交评论