2024届安徽省定远县张桥中学数学高一下期末考试模拟试题含解析_第1页
2024届安徽省定远县张桥中学数学高一下期末考试模拟试题含解析_第2页
2024届安徽省定远县张桥中学数学高一下期末考试模拟试题含解析_第3页
2024届安徽省定远县张桥中学数学高一下期末考试模拟试题含解析_第4页
2024届安徽省定远县张桥中学数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省定远县张桥中学数学高一下期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则3.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件4.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.5.使函数是偶函数,且在上是减函数的的一个值是()A. B. C. D.6.已知,,,则()A. B. C. D.7.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.8.中,,则()A. B. C.或 D.9.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.10.已知,表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,则_______;_______.12.在数列中,若,则____.13.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.14.已知数列为等比数列,,,则数列的公比为__________.15.与终边相同的最小正角是______.16.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.18.已知.(1)若不等式的解集为,求的值;(2)解不等式.19.将正弦曲线如何变换可以得到函数的图像,请写出变换过程,并画出一个周期的闭区间的函数简图.20.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.21.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【题目详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【题目点拨】本题考查直线位置关系,考查基本不等式,属于中档题。2、D【解题分析】

根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【题目详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【题目点拨】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.3、C【解题分析】至少1名女生的对立事件就是全是男生.因此事件“至少1名女生”与事件“全是男生”既是互斥事件,也是对立事件4、B【解题分析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.5、B【解题分析】

先根据辅助角公式化简,再根据奇偶性及在在上是减函数为减函数即可算出的范围。【题目详解】由题意得:因为是偶函数,所以,又因为在的减区间为,,在上是减函数,所以当时满足,选B.【题目点拨】本题主要考查了三角函数的性质:奇偶性质、单调性以及辅助角公式。型为奇函数,为偶函数。其中辅助角公式为。属于中等题。6、C【解题分析】

利用指数函数、对数函数的单调性即可求解.【题目详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【题目点拨】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.7、B【解题分析】

根据函数的对称性得到原题转化为直接求的最大和最小值即可.【题目详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【题目点拨】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.8、A【解题分析】

根据正弦定理,可得,然后根据大边对大角,可得结果..【题目详解】由,所以由,所以故,所以故选:A【题目点拨】本题考查正弦定理的应用,属基础题.9、B【解题分析】

利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【题目详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【题目点拨】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。10、A【解题分析】

根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【题目详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【题目点拨】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【题目详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【题目点拨】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.12、【解题分析】

根据递推关系式,依次求得的值.【题目详解】由于,所以,.故答案为:【题目点拨】本小题主要考查根据递推关系式求数列某一项的值,属于基础题.13、【解题分析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力14、【解题分析】

设等比数列的公比为,由可求出的值.【题目详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【题目点拨】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.15、【解题分析】

根据终边相同的角的定义以及最小正角的要求,可确定结果.【题目详解】因为,所以与终边相同的最小正角是.故答案为:.【题目点拨】本题主要考查终边相同的角,属于基础题.16、【解题分析】

由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【题目详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【题目点拨】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)设,分别在和中利用余弦定理计算,联立方程组,求得的值,再由余弦定理,即可求解的值;(2)由(1)的结论,计算,利用三角形的面积公式,即可求解.【题目详解】(1),则,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【题目点拨】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理列出方程是解答的关键,着重考查了运算与求解能力,属于基础题.18、(1);(2)时,解集为,时,解集为,时解集为.【解题分析】

(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【题目详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【题目点拨】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.19、答案见解析【解题分析】

利用函数函数的图像变换规律和五点作图法可解.【题目详解】由函数的图像上的每一点保持纵坐标不变,横坐标扩大为原来的2倍,得到函数的图像,

再将函数的图像向左平移个单位,得到函数的图像.

然后再把函数的图像上每一个点的横坐标保持不变,纵坐标扩大为原来的2倍,得到函数的图像.作函数的图像列表得0100函数图像为【题目点拨】本题考查函数的图像变换的过程叙述和作出函数的一个周期的简图,属于基础题.20、:(Ⅰ)(Ⅱ)【解题分析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论