




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省灵台一中数学高一第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方形中,分别是的中点,若则()A. B. C. D.2.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解3.过两点,的直线的倾斜角为,则实数=()A.-1 B.1C. D.4.若三个球的半径的比是1:2:3,则其中最大的一个球的体积是另两个球的体积之和的()倍.A.95 B.2 C.525.已知平行四边形对角线与交于点,设,,则()A. B. C. D.6.已知直线:,:,:,若且,则的值为A. B.10 C. D.27.已知等比数列,若,则()A. B. C.4 D.8.已知角的终边经过点,则()A. B. C.-2 D.9.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件10.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.12.如图为函数(,,,)的部分图像,则函数解析式为________13.若圆弧长度等于圆内接正六边形的边长,则该圆弧所对圆心角的弧度数为________.14.在等比数列中,,的值为________15.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.18.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.19.设函数,其中,.(1)设,若函数的图象的一条对称轴为直线,求的值;(2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的和的值;(3)设,,已知函数在区间上的所有零点依次为,且,,求的值.20.已知关于的一元二次函数,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数.(1)若,,求函数有零点的概率;(2)若,求函数在区间上是增函数的概率.21.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:取向量作为一组基底,则有,所以又,所以,即.2、B【解题分析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.3、A【解题分析】
根据两点的斜率公式及倾斜角和斜率关系,即可求得的值.【题目详解】过两点,的直线斜率为由斜率与倾斜角关系可知即解得故选:A【题目点拨】本题考查了两点间的斜率公式,直线的斜率与倾斜角关系,属于基础题.4、D【解题分析】
设最小球的半径为R,根据比例关系即可得到另外两个球的半径,再利用球的体积公式表示出三个球的体积,即可得到结论。【题目详解】设最小球的半径为R,由三个球的半径的比是1:2:3,可得另外两个球的半径分别为2R,3R;∴最小球的体积V1=43π∴V故答案选D【题目点拨】本题主要考查球体积的计算公式,属于基础题。5、B【解题分析】
根据向量减法的三角形法则和数乘运算直接可得结果.【题目详解】本题正确选项:【题目点拨】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.6、C【解题分析】
由且,列出方程,求得,,解得的值,即可求解.【题目详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选C.【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题.7、D【解题分析】
利用等比数列的通项公式求得公比,进而求得的值.【题目详解】∵,∴.故选:D.【题目点拨】本题考查等比数列通项公式,考查运算求解能力,属于基础题.8、B【解题分析】按三角函数的定义,有.9、C【解题分析】
利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【题目详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【题目点拨】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.10、B【解题分析】
直接利用正弦定理计算得到答案.【题目详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【题目点拨】本题考查了正弦定理解三角形,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.12、【解题分析】
由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【题目详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【题目点拨】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.13、1【解题分析】
根据圆的内接正六边形的边长得出弧长,利用弧长公式即可得到圆心角.【题目详解】因为圆的内接正六边形的边长等于圆的半径,所以圆弧长所对圆心角的弧度数为1.故答案为:1【题目点拨】此题考查弧长公式,根据弧长求圆心角的大小,关键在于熟记圆的内接正六边形的边长.14、【解题分析】
根据等比数列的性质,可得,即可求解.【题目详解】由题意,根据等比数列的性质,可得,解得.故答案为:【题目点拨】本题主要考查了等比数列的性质的应用,其中解答熟记等比数列的性质,准确计算是解答的关键,着重考查了计算能力,属于基础题.15、乙;【解题分析】
一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【题目详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【题目点拨】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.16、【解题分析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【题目详解】因为,所以,.所以的反函数是.故答案为:【题目点拨】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【题目详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【题目点拨】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.18、(1)或;(2).【解题分析】
解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,得l的方程为y-3=k(x-1),即kx-y+3-k=0,则=2,解得k=.∴l的方程为y-3=(x-1),即3x+4y-15=0.综上,满足条件的切线l的方程为或.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴点P的轨迹方程为.考点:直线与圆的位置关系;圆的切线方程;点的轨迹方程.19、(1);(2),;(3)【解题分析】
(1)根据对称轴对应三角函数最值以及计算的值;(2)根据条件列出等式求解和的值;(3)根据图象利用对称性分析待求式子的特点,然后求值.【题目详解】(1),因为是一条对称轴,对应最值;又因为,所以,所以,则;(2)由条件知:,可得,则,又因为,所以,则,故有:,当为奇数时,令,所以,当为偶数时,令,所以,当时,,又因为,所以;(3)分别作出(部分图像)与图象如下:因为,故共有个;记对称轴为,据图有:,,,,,则,令,则,又因为,所以,由于与仅在前半个周期内有交点,所以,则.【题目点拨】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.20、(1);(2)【解题分析】
(1)依次列出所有可能的情况,求出满足的情况总数,即可得到概率;(2)列出不等关系,表示出平面区域,求出满足表示的区域的面积,即可得到概率.【题目详解】(1)由题可得,,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数,记为,这样的有序数对共有,9种情况;函数有零点,即满足,满足条件的有:,6种情况,所以其概率为;(2),满足条件的有序数对,,即平面直角坐标系内区域:矩形及内部区域,面积为4,函数在区间上是增函数,即满足,,,即,平面直角坐标系内区域:直角梯形及内部区域,面积为3,所以其概率为.【题目点拨】此题考查古典概型与几何概型,关键在于准确得出二次函数有零点和在区间上是增函数,分别所对应的基本事件个数以及对应区域的面积.21、(1),;(2)【解题分析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出国劳务合同样本样本
- 内部股东股权转让合同样本
- 军训服合同样本
- 公司在盖房合同样本
- 交易所网签合同样本
- 五金合作合同标准文本
- 年度工作计划的调整与反馈
- 200字雇佣合同样本
- 出售合同样本写
- 第14讲 人体生命活动的调节与人类活动对生物圈的影响 2025年会考生物学专题练习(含答案)
- 2025年全国爱卫生日健康教育宣传主题班会课件
- 浙江省台州市和合联盟2023-2024学年八年级下学期期中考试数学试题(含答案)
- 中学生春季传染病预防知识
- 蒙古语中的时间表达方式研究论文
- (一模)南京市、盐城市2025届高三年级第一次模拟考试历史试卷(含官方答案)
- 2025年焦作工贸职业学院单招职业技能考试题库附答案
- 2025年塔里木职业技术学院单招职业技能测试题库完美版
- 清明节假期安全教育主题班会 课件
- 倒闸操作考试试题及答案
- 专题5 压强 2021年和2022年四川省成都市中考物理模拟试题汇编
- 【数学】三角形 问题解决策略:特殊化课件2024-2025学年北师大版数学七年级下册
评论
0/150
提交评论