2024届商丘名校数学高一下期末学业质量监测模拟试题含解析_第1页
2024届商丘名校数学高一下期末学业质量监测模拟试题含解析_第2页
2024届商丘名校数学高一下期末学业质量监测模拟试题含解析_第3页
2024届商丘名校数学高一下期末学业质量监测模拟试题含解析_第4页
2024届商丘名校数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届商丘名校数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里2.设,则使函数的定义域是,且为偶函数的所有的值是()A.0,2 B.0,-2 C. D.23.已知,,,则,,的大小关系为()A. B. C. D.4.设,且,则()A. B. C. D.5.函数的图像大致为()A. B. C. D.6.下列条件不能确定一个平面的是()A.两条相交直线 B.两条平行直线 C.直线与直线外一点 D.共线的三点7.若,且,则的值为A. B. C. D.8.已知幂函数过点,则的值为()A. B.1 C.3 D.69.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.410.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D二、填空题:本大题共6小题,每小题5分,共30分。11.已知角满足,则_____12.在等比数列中,若,则__________.13.若角的终边过点,则______.14.数列的前项和为,,且(),记,则的值是________.15._________________;16.102,238的最大公约数是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为.(1)若,求角的大小;(2)若是边上的中线,求证:.18.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=19.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.20.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份

2010

2011

2012

2013

2014

时间代号

1

2

3

4

5

储蓄存款(千亿元)

5

6

7

8

10

(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中21.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.2、D【解题分析】

根据幂函数的性质,结合题中条件,即可得出结果.【题目详解】若函数的定义域是,则;又函数为偶函数,所以只能使偶数;因为,所以能取的值为2.故选D【题目点拨】本题主要考查幂函数性质的应用,熟记幂函数的性质即可,属于常考题型.3、D【解题分析】

利用指数函数、对数函数的单调性直接求解.【题目详解】解:因为,,所以,,的大小关系为.故选:D.【题目点拨】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.4、B【解题分析】

利用两角和差正切公式可求得;根据范围可求得;利用两角和差公式计算出;利用两角和差余弦公式计算出结果.【题目详解】,又本题正确选项:【题目点拨】本题考查利用三角恒等变换中的两角和差的正余弦和正切公式求解三角函数值的问题,涉及到同角三角函数关系的应用;关键是能够熟练应用两角和差公式进行配凑,求得所需的三角函数值.5、A【解题分析】

先判断函数为偶函数排除;再根据当时,,排除得到答案.【题目详解】,偶函数,排除;当时,,排除故选:【题目点拨】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.6、D【解题分析】

根据确定平面的公理和推论逐一判断即可得解.【题目详解】解:对选项:经过两条相交直线有且只有一个平面,故错误.对选项:经过两条平行直线有且只有一个平面,故错误.对选项:经过直线与直线外一点有且只有一个平面,故错误.对选项:过共线的三点,有无数个平面,故正确;故选:.【题目点拨】本题主要考查确定平面的公理及推论.解题的关键是要对确定平面的公理及推论理解透彻,属于基础题.7、A【解题分析】

利用诱导公式求得sinα的值,再利用同角三角函数的基本关系求得cosα,再利用二倍角公式,求得sin2α的值.【题目详解】解:,且,,则,故选A.【题目点拨】本题主要考查利用诱导公式、同角三角函数的基本关系,二倍角公式进行化简三角函数式,属于基础题.8、C【解题分析】

设,代入点的坐标,求得,然后再求函数值.【题目详解】设,由题意,,即,∴.故选:C.【题目点拨】本题考查幂函数的解析式,属于基础题.9、C【解题分析】

根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【题目详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【题目点拨】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解题分析】

根据向量共线定理进行判断即可.【题目详解】因为,且,有公共点B,所以A,B,D三点共线.故选:A.【题目点拨】本题考查了用向量共线定理证明三点共线问题,属于常考题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用诱导公式以及两角和与差的三角公式,化简求解即可.【题目详解】解:角满足,可得

则.

故答案为:.【题目点拨】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.12、80【解题分析】

由即可求出【题目详解】因为是等比数列,所以,所以即故答案为:80【题目点拨】本题考查的是等比数列的性质,较简单13、-2【解题分析】

由正切函数定义计算.【题目详解】根据正切函数定义:.故答案为-2.【题目点拨】本题考查三角函数的定义,掌握三角函数定义是解题基础.14、3【解题分析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【题目详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【题目点拨】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.15、1【解题分析】

利用诱导公式化简即可得出答案【题目详解】【题目点拨】本题考查诱导公式,属于基础题.16、34【解题分析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解题分析】

(1)已知三边的关系且有平方,考虑化简式子构成余弦定理即可。(2)观察结论形似余弦定理,通过,则互补,则余弦值互为相反数联系。【题目详解】(1)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)设,,则在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【题目点拨】解三角形要注意观察题干条件所给的形式,出现边长平方一般会考虑用到余弦定理。正弦定理和余弦定理是我们解三角形的两大常用工具,需要熟练运用。18、(1)-4(2)g(t)=t2【解题分析】

(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【题目详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【题目点拨】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1);(2)【解题分析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.20、(Ⅰ),(Ⅱ)千亿元.【解题分析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下i

1

1

5

1

5

2

2

6

4

12

3

3

7

9

21

4

4

8

16

32

5

5

10

25

50

15

36

55

120

这里又从而.故所求回归方程为.(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为考点:线性回归方程.21、(1);(2).【解题分析】

(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论