湖南省怀化市2024届数学高一第二学期期末预测试题含解析_第1页
湖南省怀化市2024届数学高一第二学期期末预测试题含解析_第2页
湖南省怀化市2024届数学高一第二学期期末预测试题含解析_第3页
湖南省怀化市2024届数学高一第二学期期末预测试题含解析_第4页
湖南省怀化市2024届数学高一第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省怀化市2024届数学高一第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.2.已知平面向量的夹角为,且,则()A. B. C. D.3.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个4.已知向量,,若,则与的夹角为()A. B. C. D.5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题是()A.①② B.②③ C.③④ D.④6.下列函数中周期为,且图象关于直线对称的函数是()A. B.C. D.7.函数(其中,)的部分图象如图所示、将函数的图象向左平移个单位长度,得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的单调递增区间为C.函数为偶函数D.函数的图象的对称轴为直线8.点到直线的距离是()A. B. C.3 D.9.已知函数,若存在实数,满足,则实数的取值范围为(

)A. B.C. D.10.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1二、填空题:本大题共6小题,每小题5分,共30分。11.函数在内的单调递增区间为____.12.关于的方程()的两虚根为、,且,则实数的值是________.13.已知,,则______.14.已知等比数列an中,a3=2,a15.已知函数,则的取值范围是____16.数列满足,则数列的前6项和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.18.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.19.已知函数.(1)证明函数在定义域上单调递增;(2)求函数的值域;(3)令,讨论函数零点的个数.20.在中,内角,,所对的边分别为,,.已知.(Ⅰ)求;(Ⅱ)若,,求的值.21.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【题目点拨】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.2、B【解题分析】

将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【题目详解】,因此,,故选B.【题目点拨】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.3、D【解题分析】

利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【题目详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【题目点拨】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.4、D【解题分析】∵,,⊥,∴,解得.∴.∴,又.设向量与的夹角为,则.又,∴.选D.5、D【解题分析】

利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可.【题目详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.故选D.【题目点拨】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.6、B【解题分析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.考点:三角函数性质7、B【解题分析】

本题首先可以根据题目所给出的图像得出函数的解析式,然后根据三角函数平移的相关性质以及函数的解析式得出函数的解析式,最后通过函数的解析式求出函数的单调递增区间,即可得出结果.【题目详解】由函数的图像可知函数的周期为、过点、最大值为3,所以,,,,,所以取时,函数的解析式为,将函数的图像向左平移个单位长度得,当时,即时,函数单调递增,故选B.【题目点拨】本题考查三角函数的相关性质,主要考查三角函数图像的相关性质以及三角函数图像的变换,函数向左平移个单位所得到的函数,考查推理论证能力,是中档题.8、D【解题分析】

根据点到直线的距离求解即可.【题目详解】点到直线的距离是.故选:D【题目点拨】本题主要考查了点到线的距离公式,属于基础题.9、A【解题分析】

根据题意可知方程有解即可,代入解析式化简后,利用基本不等式得出,再利用分类讨论思想即可求出实数的取值范围.【题目详解】由题意知,方程有解,则,化简得,即,因为,所以,当时,化简得,解得;当时,化简得,解得,综上所述的取值范围为.故答案为:A【题目点拨】本题主要考查了函数的基本性质的应用,以及利用基本不等式求最值的应用,其中解答中利用题设条件化简,合理利用基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10、D【解题分析】

利用算法的定义来分析判断各选项的正确与否,即可求解,得到答案.【题目详解】由算法的定义可知,算法、程序是完成一件事情的可操作的步骤:可得A、B、C为算法,D没有明确的规则和步骤,所以不是算法,故选D.【题目点拨】本题主要考查了算法的概念,其中解答的关键是理解算法的概念,由概念作出正确的判断,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

将函数进行化简为,求出其单调增区间再结合,可得结论.【题目详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【题目点拨】本题考查了正弦函数的单调区间,属于基础题。12、5【解题分析】

关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【题目详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【题目点拨】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.13、【解题分析】

由,然后利用两角差的正切公式可计算出的值.【题目详解】.故答案为:.【题目点拨】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.14、4【解题分析】

先计算a5【题目详解】aaa故答案为4【题目点拨】本题考查了等比数列的计算,意在考查学生的计算能力.15、【解题分析】

分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【题目详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【题目点拨】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.16、84【解题分析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【题目详解】因为,所以.【题目点拨】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解题分析】

(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可(3)计算出两位同学的实验数据的平均数和方差,问题得解【题目详解】(1)设有名男同学,则,∴,∴男、女同学的人数分别为3人,1人(2)把3名男同学和1名女同学记为,则选取两名同学的基本事件有,,,,,,,,,,,共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为(3),,因,所以第二位同学的实验更稳定.【题目点拨】本题主要考查了分层抽样比例关系及古典概型概率计算公式,还考查了样本数据的平均数及方差计算,考查方差与稳定性的关系,属于中档题18、(1)(2);(3).【解题分析】

(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【题目详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【题目点拨】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)证明见解析;(2);(3)当时,没有零点;当时,有且仅有一个零点【解题分析】

(1)求出函数定义域后直接用定义法即可证明;(2)由题意得,对两边同时平方得,求出的取值范围即可得解;(3)转化条件得,令,利用二次函数的性质分类讨论即可得解.【题目详解】(1)证明:令,解得,故函数的定义域为令,由,可得,所以,,故即,所以函数在定义域上单调递增.(2)由,,故,,当时,,有,可得:,故,由,可得,故函数的值域为,(3)由(2)知,则,令,则,令,①当时,,此时函数没有零点,故函数也没有零点;②当时,二次函数的对称轴为,则函数在区间单调递增,而,,故函数有一个零点,又由函数单调递增,可得函数也只有一个零点;③当时,,二次函数开口向下,对称轴,又,,此时函数没有零点,故函数也没有零点.综上,当时,函数没有零点;当时,函数有且仅有一个零点.【题目点拨】本题考查了函数单调性的证明、值域的求解和零点问题,考查了转化化归思想和分类讨论思想,属于中档题.20、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)根据正弦定理将边角转化,结合三角函数性质即可求得角.(Ⅱ)先根据余弦定理求得,再由正弦定理求得,利用同角三角函数关系式求得,即可求得.即可求得的值.【题目详解】(Ⅰ)在中,由正弦定理可得即因为,所以,即又因为,可得(Ⅱ)在中,由余弦定理及,,有,故由正弦定理可得因为,故因此,所以,【题目点拨】本题考查了正弦定理与余弦定理在解三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论