2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题含解析_第1页
2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题含解析_第2页
2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题含解析_第3页
2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题含解析_第4页
2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省沈阳市重点联合体数学高一下期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为()A. B. C. D.2.在中,已知,则的面积为()A. B. C. D.3.长方体中,已知,,棱在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B. C. D.4.已知函数,若对于恒成立,则实数的取值范围为()A. B. C. D.5.数列为等比数列,若,,数列的前项和为,则A. B. C.7 D.316.已知,,,则()A. B. C. D.7.的值是()A. B. C. D.8.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.9.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则10.如图是某体育比赛现场上评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别是()A.5和1.6 B.85和1.6 C.85和0.4 D.5和0.4二、填空题:本大题共6小题,每小题5分,共30分。11.记等差数列的前项和为,若,则________.12.已知函数,(常数、),若当且仅当时,函数取得最大值1,则实数的数值为______.13.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.414.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.7,现两人各自独立射击一次,均中靶的概率为______.15.在空间直角坐标系中,点关于原点的对称点的坐标为______.16.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求函数的单调递减区间;(2)若,求函数的值域.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:分组频数频率2440.120.05合计1(1)求出表中,及图中的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.20.若,且,求的值.21.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据三角函数的定义,即可求解,得到答案.【题目详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【题目点拨】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.2、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.3、A【解题分析】

本题等价于求过BC直线的平面截长方体的面积的取值范围。【题目详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。由图形知,,故选A.【题目点拨】将问题等价转换为可视的问题。4、A【解题分析】

首先设,将题意转化为,即可,再分类讨论求出,解不等式组即可.【题目详解】,恒成立,等价于,恒成立.令,对称轴为.即等价于,即可.当时,得到,解得:.当时,得到,解得:.当时,得到,解得:.综上所述:.故选:A【题目点拨】本题主要考查二次不等式的恒成立问题,同时考查了二次函数的最值问题,分类讨论是解题的关键,属于中档题.5、A【解题分析】

先求等比数列通项公式,再根据等比数列求和公式求结果.【题目详解】数列为等比数列,,,,解得,,数列的前项和为,.故选.【题目点拨】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.6、C【解题分析】

利用指数函数、对数函数的单调性即可求解.【题目详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【题目点拨】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.7、A【解题分析】由于==.故选A.8、B【解题分析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【题目详解】由题得长方体外接球的直径.故选:B【题目点拨】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解题分析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【题目详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.10、B【解题分析】

去掉最低分分,最高分分,利用平均数的计算公式求得,利用方差公式求得.【题目详解】去掉最低分分,最高分分,得到数据,该组数据的平均数,.【题目点拨】本题考查从茎叶图中提取信息,并对数据进行加工和处理,考查基本的运算求解和读图的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解题分析】

由等差数列求和的性质可得,求得,再利用性质可得结果.【题目详解】因为,所以,所以,故故答案为10【题目点拨】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.12、-1【解题分析】

先将函数转化成同名三角函数,再结合二次函数性质进行求解即可【题目详解】令,,对称轴为;当时,时函数值最大,,解得;当时,对称轴为,函数在时取到最大值,与题设矛盾;当时,时函数值最大,,解得;故的数值为:-1故答案为:-1【题目点拨】本题考查换元法在三角函数中的应用,分类讨论求解函数最值,属于中档题13、4.3【解题分析】

由所给数据求出,根据回归直线过中心点可求解.【题目详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【题目点拨】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.14、0.56【解题分析】

根据在一次射击中,甲、乙同时射中目标是相互独立的,利用相互独立事件的概率乘法公式,即可求解.【题目详解】由题意,甲的中靶概率为0.8,乙的中靶概率为0.7,所以两人均中靶的概率为,故答案为0.56【题目点拨】本题主要考查了相互独立事件的概率乘法公式的应用,其中解答中合理利用相互独立的概率乘法公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】

利用空间直角坐标系中,关于原点对称的点的坐标特征解答即可.【题目详解】在空间直角坐标系中,关于原点对称的点的坐标对应互为相反数,所以点关于原点的对称点的坐标为.故答案为:【题目点拨】本题主要考查空间直角坐标系中对称点的特点,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解题分析】

观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【题目详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【题目点拨】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)由二倍角公式将表达式化一得到,,令,得到单调区间;(2)时,,根据第一问的表达式得到值域.详解:(1)由令得:所以,函数的单调减区间为(2)当时,所以,函数的值域是:.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用三角函数的图像特点得到函数的值域.18、(Ⅰ)(Ⅱ)【解题分析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、(1);;;(2)60人.(3)【解题分析】

(1)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值;(2)该校高三学生有240人,分组内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人;(3)设在区间内的人为,,,,在区间内的人为,,写出任选2人的所有基本事件,利用对立事件求得答案.【题目详解】(1)由分组内的频数是10,频率是0.25知,,∴.∵频数之和为40,∴,,.∵是对应分组的频率与组距的商,∴;(2)因为该校高三学生有240人,分组内的频率是0.25,∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人.(3)这个样本参加社区服务的次数不少于20次的学生共有人,设在区间内的人为,,,,在区间内的人为,.则任选2人共有,,,,,,,,,,,,,,15种情况,而两人都在内只能是一种,∴所求概率为.【题目点拨】本题以图表为背景,考查从图表中提取信息,同时在统计的基础上,考查古典概型的计算,考查基本数据处理能力.20、【解题分析】

本题首先可根据以及诱导公式得出,然后根据以及同角三角函数关系计算出,最后根据即可得出结果.【题目详解】因为,所以,因为,所以,因为,所以解得,.【题目点拨】本题考查同角三角函数关系的应用,考查的公式有、以及,考查计算能力,是简单题.21、(1);(2)或.【解题分析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【题目详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论