版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆周角回忆1.什么叫圆心角?.OAB顶点在圆心的角叫圆心角2.圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等,那么它们所对应的其余两个量都分别相等。探究.OA问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察得到的∠ACB有什么特征?C顶点在圆上两边都与圆相交这样的角(∠ACB)叫圆周角。B问题探讨:判断下列图形中所画的∠P是否为圆周角?并说明理由。PPPP不是是不是不是顶点不在圆上。顶点在圆上,两边和圆相交。两边不和圆相交。有一边和圆不相交。练习一:下图中有哪些圆周角?A..BCD以A为顶点:∠DAB、∠DAC、∠BAC以B为顶点:∠ABD以D为顶点:∠ADB观察思考:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.问题探讨:
问题1
如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,同学丙站在D处,同学丁站在E处,他们的视角(∠ACB和∠ADB和∠AEB)有什么关系?
用量角器量一下,有什么发现?圆周角定理(1):
在同圆或等圆中,同弧所对的圆周角相等∠ACB=∠ADB=∠AEB=50度问题探讨:
问题2
如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?
用量角器量一下,有什么发现?∠AOB=2∠ACB问题解决:你能画出同弧所对的圆周角和圆心角吗?你能证明你的发现(即同弧所对的圆周角度数等于这条弧所对的圆心角的一半)吗?ABCOABCOABCO分析论证1.首先考虑一种特殊情况:
当圆心(O)在圆周角(∠BAC)的一边(BA)上时,圆周角∠BAC与圆心角∠BOC的大小关系.ABCO∵OA=OC∴∠A=∠C又∠BOC=∠A+∠C∴∠BOC=2∠A即∠A=∠BOC分析论证你能证明第2种情况吗?ABCOD提示:作射线AO交⊙O于D。转化为第1种情况证明:由第1种情况得即∠BAC=∠BOC∠BAD=∠BOD∠CAD=∠COD∠BAD+∠CAD=∠BOD+∠COD分析论证你能证明第3种情况吗?证明:作射线AO交⊙O于D。由第1种情况得即∠BAC=∠BOC∠BAD=∠BOD∠CAD=∠COD∠CAD-∠BAD=∠COD-∠BODABCOD问题解决:综上所述:我们得到:同弧所对的圆周角度数等于这条弧所对的圆心角的一半ABCOABCOABCO即∠BAC=∠BOC圆周角定理:
在同圆或等圆中,同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。练习:如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?D12345678ABC∠1=∠4∠2=∠7∠3=∠6∠5=∠8解:
问题1:如图,AB是⊙O的直径,请问:∠C1、∠C2、∠C3的度数是
。ABOC1C2C3推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。问题2:若∠C1、∠C2、∠C3是直角,那么∠AOB是
。90°180°探究与思考:练一练1、如图,在⊙O中,∠ABC=50°,则∠AOC等于()A、50°;B、80°;C、90°;D、100°ACBOD2、如图,△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于()A、30°;B、60°;C、90°;D、45°CABPB练一练3、如图,∠A=50°,∠AOD=60°BD是⊙O的直径,则∠AEB等于()A、70°;B、100°;C、90°;D、120°B4、如图,△ABC的顶点A、B、C都在⊙O上,∠C=30°,AB=2,则⊙O的半径是
。ACBODECABO解:连接OA、OB∵∠C=30°,∴∠AOB=60°又∵OA=OB,∴△AOB是等边三角形∴OA=OB=AB=2,即半径为2。2填空(1)40°弧所对的圆心角是
度,圆周角
度。(2)一条弧所对的圆周角等于50°,则这条弧所对的圆心角是
度,这条弧是
度。(3)n°弧所对的圆心角是
度,所对的圆周角是
度。
(4)如图,A、B、C、D在⊙O上,∠AOC=Rt∠,则ADC=
度,∠ABC=
度。(5)半圆或直径所对的圆周角是
度。
90°的圆周角所对的弦是
。2040100100n½n27013590直径练一练5、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F,点F不与点A重合。(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由。ACBDF·O∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《园艺通论》2023-2024学年第一学期期末试卷
- 洞穴奇案读书分享
- 石河子大学《跆拳道》2021-2022学年第一学期期末试卷
- 石河子大学《模拟电子技术》2021-2022学年期末试卷
- 石河子大学《教育网站设计与开发》2023-2024学年第一学期期末试卷
- 沈阳理工大学《体能与营养》2023-2024学年第一学期期末试卷
- 沈阳理工大学《机械设计学》2021-2022学年第一学期期末试卷
- 沈阳理工大学《高等代数》2021-2022学年第一学期期末试卷
- 沈阳理工大学《城市设计》2021-2022学年第一学期期末试卷
- 沈阳理工大学《材料成型工艺与装备》2023-2024学年第一学期期末试卷
- 化工劳动纪律培训课件
- 中医培训课件:《拔罐技术》
- 筋伤概论-骨伤科
- 惠安女课件完
- 盐酸采购和储存和使用安全管理
- 2022信息安全技术服务器安全技术要求和测评准则
- 健身及体育运动服务领域:第一体育企业组织架构及部门职责
- 安全保卫常识课件
- 乳腺癌放疗后的皮肤护理课件
- 《培训与开发 》课件
- 信赖性测试一览表-
评论
0/150
提交评论