版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省连云港市数学高一第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.2.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.3.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.4.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或5.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.86.如果执行右面的框图,输入,则输出的数等于()A. B. C. D.7.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.8.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.34 B.42 C.54 D.729.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.010.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面二、填空题:本大题共6小题,每小题5分,共30分。11.用线性回归某型求得甲、乙、丙3组不同的数据的线性关系数分别为0.81,-0.98,0.63,其中_________(填甲、乙、丙中的一个)组数据的线性关系性最强。12.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.13.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.14.已知,则__________.15.已知圆锥的表面积等于,其侧面展开图是一个半圆,则底面圆的半径为__________.16.函数在的值域是__________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.18.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与19.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.20.如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;(2)设百米,百米,,,求山崖的长.(精确到米)21.已知的三个顶点为.(1)求过点且平行于的直线方程;(2)求过点且与、距离相等的直线方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【题目详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【题目点拨】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.2、D【解题分析】
利用古典概型的概率公式可计算出所求事件的概率.【题目详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【题目点拨】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.3、C【解题分析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.4、B【解题分析】
由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【题目详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【题目点拨】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.5、B【解题分析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【题目点拨】6、D【解题分析】试题分析:当时,该程序框图所表示的算法功能为:,故选D.考点:程序框图.7、C【解题分析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【题目详解】倾斜角为,斜率为,由点斜式得,即.故选C.【题目点拨】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.8、C【解题分析】
还原几何体得四棱锥E﹣ABCD,由图中数据利用椎体的体积公式求解即可.【题目详解】依三视图知该几何体为四棱锥E﹣ABCD,如图,ABCD是直角梯形,是棱长为6的正方体的一部分,梯形的面积为:12几何体的体积为:13故选:C.【题目点拨】本题考查三视图求几何体的体积,由三视图正确还原几何体和补形是解题的关键,考查空间想象能力.9、C【解题分析】
画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.10、C【解题分析】
对四个选项逐个分析,可得出答案.【题目详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【题目点拨】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、乙【解题分析】由当数据的相关系数的绝对值越趋向于,则相关性越强可知,因为甲、乙、丙组不同的数据的线性相关系数分别为,所以乙线性相关系数的绝对值越接近,所以乙组数据的相关性越强.12、【解题分析】
利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【题目详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【题目点拨】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.13、(-∞,-1)∪(3,+∞)【解题分析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)14、【解题分析】
对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【题目详解】因为,所以,即,所以.【题目点拨】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.15、【解题分析】
设出底面圆的半径,用半径表示出圆锥的母线,再利用表面积,解出半径。【题目详解】设圆锥的底面圆的半径为,母线为,则底面圆面积为,周长为,则解得故填2【题目点拨】本题考查根据圆锥的表面积求底面圆半径,属于基础题。16、【解题分析】
利用反三角函数的性质及,可得答案.【题目详解】解:,且,,∴,故答案为:【题目点拨】本题主要考查反三角函数的性质,相对简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】
(1)根据,即可得解;(2)根据公式计算求解.【题目详解】(1)由题向量的夹角为60°,所以,,;(2),所以【题目点拨】此题考查平面向量数量积,根据定义计算两个向量的数量积,求向量的模长和根据数量积与模长关系求向量夹角.18、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解题分析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实数的取值范围为.(Ⅲ)()对任意的(a)若且,则,,这与在上单调递增矛盾,(舍),(b)若且,则,这与是“函数”矛盾,(舍).此时,由的定义域为,故对任意的,与恰有一个属于,另一个属于.()假设存在,使得,则由,故.(a)若,则,矛盾,(b)若,则,矛盾.综上,对任意的,,故,即,则.()假设,则,矛盾.故故,.经检验,.符合题意点睛:此题是新定义的题目,根据已知的新概念,新信息来马上应用到题型中,根据函数的定义即函数没有关于原点对称的部分即可,故可以从图像的角度来研究函数;第三问可以假设存在,最后推翻结论即可。19、(1);(2).【解题分析】
(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;
(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【题目详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.
(2)当为偶数时,,当为奇数时,为偶数,
综上所述,当为偶数时,,当为奇数时,即.【题目点拨】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.20、(1)米,详见解析(2)205米【解题分析】
(1)由题意测得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等变换求得,在中利用余弦定理求得的值.【题目详解】解:(1)据题意,可测得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,从而的.∵,在中,由余弦定理得米所以,的长度约为205米.解二:(2)在中,求得.在中,由余弦定理,得,进而得,再由可求得,.在中,由余弦定理,得.所以,的长度约为205米.【题目点拨】本题考查了三角恒等变换与解三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年亲子园所特许经营协议
- 二零二五版环保管家技术服务合同样本:企业环保审计服务3篇
- 2025年度临床试验知识产权合同主体权益保护措施4篇
- 二零二五年度退休人员劳动解除合同及退休金领取及后续保障合同
- 2025年度临时工岗位临时性加班合同
- 2025年度电影演员演出合同书:科幻灾难片主演合约
- 2025年度门窗安装与智能化系统集成合同4篇
- 2025年度城市综合体门头租赁管理服务协议
- 二零二五年度C型钢智能化生产系统建设合同3篇
- 二零二五年度锂电池回收利用项目投资合作协议
- 二年级数学上册100道口算题大全 (每日一套共26套)
- 物流无人机垂直起降场选址与建设规范
- 肺炎临床路径
- 外科手术铺巾顺序
- 创新者的窘境读书课件
- 如何克服高中生的社交恐惧症
- 聚焦任务的学习设计作业改革新视角
- 移动商务内容运营(吴洪贵)任务三 APP的品牌建立与价值提供
- 电子竞技范文10篇
- 食堂服务质量控制方案与保障措施
- VI设计辅助图形设计(2022版)
评论
0/150
提交评论