![上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view11/M01/1D/23/wKhkGWWlZb-AIPogAAGkm24x5ss762.jpg)
![上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view11/M01/1D/23/wKhkGWWlZb-AIPogAAGkm24x5ss7622.jpg)
![上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view11/M01/1D/23/wKhkGWWlZb-AIPogAAGkm24x5ss7623.jpg)
![上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view11/M01/1D/23/wKhkGWWlZb-AIPogAAGkm24x5ss7624.jpg)
![上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view11/M01/1D/23/wKhkGWWlZb-AIPogAAGkm24x5ss7625.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市长宁、青浦、宝山、嘉定2024届数学高一第二学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在区间上为增函数的是A. B.C. D.2.三棱锥中,平面且是边长为的等边三角形,则该三棱锥外接球的表面积为()A. B. C. D.3.已知,并且是第二象限的角,那么的值等于()A. B. C. D.4.已知直线与平行,则等于()A.或 B.或 C. D.5.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.6.函数()的部分图象如图所示,若,且,则()A.1 B. C. D.7.已知集合,则()A. B. C. D.8.设等比数列的前项和为,若,则()A. B. C. D.9.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则10.已知,则下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为___________.12.已知正实数满足,则的值为_____________.13.已知向量,,且,则_______.14.已知实数,是与的等比中项,则的最小值是______.15.设的内角、、的对边分别为、、,且满足.则______.16.把数列的所有数按照从大到小的原则写成如下数表:第行有个数,第行的第个数(从左数起)记为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.18.某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.19.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.20.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.21.已知向量(cosx+sinx,1),(sinx,),函数.(1)若f(θ)=3且θ∈(0,π),求θ;(2)求函数f(x)的最小正周期T及单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.2、C【解题分析】根据已知中底面是边长为的正三角形,,平面,可得此三棱锥外接球,即为以为底面以为高的正三棱柱的外接球
∵是边长为的正三角形,∴的外接圆半径球心到的外接圆圆心的距离故球的半径故三棱锥外接球的表面积故选C.3、A【解题分析】
根据同角三角函数关系,进行求解即可.【题目详解】因为,故又因为是第二象限的角,故故.故选:A.【题目点拨】本题考查同角三角函数关系的简单使用,属基础题.4、C【解题分析】
由题意可知且,解得.故选.5、A【解题分析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.6、D【解题分析】
由三角函数的图象求得,再根据三角函数的图象与性质,即可求解.【题目详解】由图象可知,,即,所以,即,又因为,则,解得,又由,所以,所以,又因为,所以图中的最高点坐标为.结合图象和已知条件可知,所以,故选D.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式,以及三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】
由,得,然后根据集合的交集运算,即可得到本题答案.【题目详解】因为,所以.故选:A【题目点拨】本题主要考查集合的交集运算及对数不等式.8、C【解题分析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【题目详解】根据等比数列性质:成等比数列,设则,;故选:C【题目点拨】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.9、D【解题分析】
根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【题目详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【题目点拨】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.10、D【解题分析】
利用排除法,取,,可排除错误选项,再结合函数的单调性,可证明D正确.【题目详解】取,,可排除A,B,C,由函数是上的增函数,又,所以,即选项D正确.故选:D.【题目点拨】本题考查不等式的性质,考查学生的推理论证能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期公式可得函数的最小正周期.【题目详解】解:由题意可得:,可得函数的最小正周期为:,故答案为:.【题目点拨】本题主要考查二倍角的化简求值和三角函数周期性的求法,属于基础知识的考查.12、【解题分析】
将已知等式,两边同取以为底的对数,求出,利用换底公式,即可求解.【题目详解】,,,.故答案为:.【题目点拨】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.13、-2或3【解题分析】
用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【题目详解】由题意得:或本题正确结果:或【题目点拨】本题考查向量垂直的坐标表示,属于基础题.14、【解题分析】
通过是与的等比中项得到,利用均值不等式求得最小值.【题目详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【题目点拨】本题考查了等比中项,均值不等式,1的代换是解题的关键.15、4【解题分析】
解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.16、【解题分析】
第行有个数知每行数的个数成等比数列,要求,先要求出,就必须求出前行一共出现了多少个数,根据等比数列的求和公式可求,而由可知,每一行数的分母成等差数列,可求出,令,即可求出.【题目详解】由第行有个数,可知每一行数的个数成等比数列,首项是,公比是,所以,前行共有个数,所以,第行第一个数为,,因此,.故答案为:.【题目点拨】本题考查数列的性质和应用,解题时要注意数阵的应用,同时要找出数阵的规律,考查推理能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【题目详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【题目点拨】本题考查向量共线和向量垂直的坐标运算,属于基础题.18、(1)男、女同学的人数分别为3人,1人;(2);(3)第二位同学的实验更稳定,理由见解析【解题分析】
(1)设有名男同学,利用抽样比列方程即可得解(2)列出基本事件总数为12,其中恰有一名女同学的有6种,利用古典概型概率公式计算即可(3)计算出两位同学的实验数据的平均数和方差,问题得解【题目详解】(1)设有名男同学,则,∴,∴男、女同学的人数分别为3人,1人(2)把3名男同学和1名女同学记为,则选取两名同学的基本事件有,,,,,,,,,,,共12种,其中恰有一名女同学的有6种,∴选出的两名同学中恰有一名女同学的概率为(3),,因,所以第二位同学的实验更稳定.【题目点拨】本题主要考查了分层抽样比例关系及古典概型概率计算公式,还考查了样本数据的平均数及方差计算,考查方差与稳定性的关系,属于中档题19、(I);(II).【解题分析】
(I)得,求出.(Ⅱ)由题意可知,化简得,再结合余弦定理求出,再利用正弦定理求出的值.【题目详解】(I),所以,所以因为,所以,所以(Ⅱ)由题意可知:所以所以又因为,所以,因为,所以由正弦定理可得,所以【题目点拨】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.20、(1)(2)存在,最小值是.【解题分析】
(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【题目详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【题目点拨】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.21、(1)θ(2)最小正周期为π;单调递增区间为[kπ,kπ],k∈Z【解题分析】
(1)计算平面向量的数量积得出函数f(x)的解析式,求出f(θ)=3时θ的值;
(2)根据函数f(x)的解析式,求出它的最小正周期和单调递增区间.【题目详解】(1)向量(cosx+sinx,1),(sinx,)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人信用贷款第三方担保合同样本
- 云存储硬盘空间租用合同协议
- 上市公司技术合作合同模板
- 个人房屋抵押贷款合同范本
- 临时用工安全免责合同协议
- 个人理财规划合同书
- 专业版办公室装修合同模板
- 二手汽车购销合同范本
- 云计算资源租赁与服务外包合同
- 个人住房贷款担保合同样本
- 中考记叙文阅读
- 《计算机应用基础》-Excel-考试复习题库(含答案)
- 产科沟通模板
- 2023-2024学年四川省成都市小学数学一年级下册期末提升试题
- GB/T 7462-1994表面活性剂发泡力的测定改进Ross-Miles法
- GB/T 2934-2007联运通用平托盘主要尺寸及公差
- GB/T 21709.13-2013针灸技术操作规范第13部分:芒针
- 2022年青岛职业技术学院单招语文考试试题及答案解析
- 急诊科进修汇报课件
- 一年级家访记录表(常用)
- 信息技术基础ppt课件(完整版)
评论
0/150
提交评论