2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题含解析_第1页
2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题含解析_第2页
2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题含解析_第3页
2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题含解析_第4页
2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北随州市普通高中高一数学第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正方体中,异面直线与BC所成角的大小为()A. B. C. D.2.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.3.如图,正方形的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是()cm.A.12 B.16 C. D.4.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.5.设变量,满足约束条件则目标函数的最小值为()A.4 B.-5 C.-6 D.-86.已知幂函数过点,则的值为()A. B.1 C.3 D.67.垂直于同一条直线的两条直线一定()A.平行 B.相交 C.异面 D.以上都有可能8.若,且,则是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角9.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,这三天中恰有两天下雨的概率近似为A.0.35 B.0.25 C.0.20 D.0.1510.如图,将边长为的正方形沿对角线折成大小等于的二面角分别为的中点,若,则线段长度的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.12.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.13.若当时,不等式恒成立,则实数a的取值范围是_____.14.记Sn为等比数列{an}的前n项和.若,则S5=____________.15.在中,已知,,,则角__________.16.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,值域为,求常数、的值;18.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。19.某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.20.已知函数,(1)求的值;(2)求的单调递增区间.21.已知函数.(1)若函数的周期,且满足,求及的递增区间;(2)若,在上的最小值为,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【题目详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【题目点拨】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.2、B【解题分析】

先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【题目详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【题目点拨】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.3、B【解题分析】

根据直观图与原图形的关系,可知原图形为平行四边形,结合线段关系即可求解.【题目详解】根据直观图,可知原图形为平行四边形,因为正方形的边长为2cm,所以原图形cm,,则,所以原平面图形的周长为,故选:B.【题目点拨】本题考查了平面图形直观图与原图形的关系,由直观图求原图形面积方法,属于基础题.4、C【解题分析】

作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【题目详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【题目点拨】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.5、D【解题分析】绘制不等式组所表示的平面区域,结合目标函数的几何意义可知,目标函数在点处取得最小值.本题选择D选项.6、C【解题分析】

设,代入点的坐标,求得,然后再求函数值.【题目详解】设,由题意,,即,∴.故选:C.【题目点拨】本题考查幂函数的解析式,属于基础题.7、D【解题分析】试题分析:根据在同一平面内两直线平行或相交,在空间内两直线平行、相交或异面判断.解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D考点:空间中直线与直线之间的位置关系.8、C【解题分析】,则的终边在三、四象限;则的终边在三、一象限,,,同时满足,则的终边在三象限.9、B【解题分析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为=0.1.故选B10、A【解题分析】

连接和,由二面角的定义得出,由结合为的中点,可知是的角平分线且,由的范围可得出的范围,于是得出的取值范围.【题目详解】连接,可得,即有为二面角的平面角,且,在等腰中,,且,,则,故答案为,故选A.【题目点拨】本题考查线段长度的取值范围,考查二面角的定义以及锐角三角函数的定义,解题的关键在于充分研究图形的几何特征,将所求线段与角建立关系,借助三角函数来求解,考查推理能力与计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【题目详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【题目点拨】本题考查异面直线所成的角,属基础题.12、2【解题分析】

由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【题目详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【题目详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【题目点拨】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.14、.【解题分析】

本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【题目详解】设等比数列的公比为,由已知,所以又,所以所以.【题目点拨】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.15、【解题分析】

先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【题目详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【题目点拨】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.16、.【解题分析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【题目详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【题目点拨】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,;或,;【解题分析】

先利用辅助角公式化简,再根据,值域为求解即可.【题目详解】.又则,当时,,此时当时,,此时故,;或,;【题目点拨】本题主要考查了三角函数的辅助角公式以及三角函数值域的问题,需要根据自变量的范围求出值域,同时注意正弦函数部分的系数正负,属于中等题型.18、(1)B(0,7)(2)19x+y-7=0【解题分析】

(1)联立直线AB,BD的方程,求出点B坐标;(2)求出点C12,-52,利用B,C【题目详解】由A(4,3)及AB边上的高所在直线为x-y-3=0,得AB所在直线方程为x+y-7=0又BD所在直线方程为3x+y-7=0由3x+y-7=0x+y-7=0,得B(0,7)(2)设C(m,n),又A(4,3),D为AC中点,则Dm+4由已知得3×m+42+又B(0,7)得直线BC的方程为19x+y-7=0.【题目点拨】考查直线的垂直关系、直线的交点坐标、直线方程的求法等,考查运算求解能力.19、(1)见解析;(2);1350人;(3)平均体重为.【解题分析】

(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出结果.(2)体重在之间的学生人数的率,从而,体重在,内人数的频率为0.675,由此能求出估计全体非毕业班学生体重在,内的人数.(3)设高一全体学生的平均体重为:,频率为,高二全体学生的平均体重为,频率为,由此能估计全体非毕业班学生的平均体重.【题目详解】(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生、高一女生、高二男生、高二女生高一男:人,高一女:人高二男:,高二女:人可能的方案一:按性别分为两层,男生与女生男生人数:人,女生人数:人可能的方案二:按年级分为两层,高一学生与高二学生高一人数:人,高二人数:人(2)体重在70-80之间学生人数的频率:体重在内人数的频率为:∴估计全体非毕业班学生体重在内的人数为:人(3)设高一全体学生的平均体重为,频率为高二全体学生的平均体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论